DeepModeling

Define the future of scientific computing together

Publications driven by DeePMD-kit

The following publications have used the DeePMD-kit software. Publications that only mentioned the DeePMD-kit will not be included below.

We encourage explicitly mentioning DeePMD-kit with proper citations in your publications, so we can more easily find and list these publications.

Last update date: June 30, 2024

2024

Combining stochastic density functional theory with deep potential molecular dynamics to study warm dense matter

Tao Chen, Qianrui Liu, Yu Liu, Liang Sun, Mohan Chen
Matter Radiat. Extrem., 2024, 9 (1).
DOI: 10.1063/5.0163303

Double-Layer Distribution of Hydronium and Hydroxide Ions in the Air-Water Interface

Pengchao Zhang, Muye Feng, Xuefei Xu
Acs Phys. Chem Au, 2024.
DOI: 10.1021/acsphyschemau.3c00076

Polarization-driven band topology evolution in twisted MoTe2 and WSe2

Xiao-Wei Zhang, Chong Wang, Xiaoyu Liu, Yueyao Fan, Ting Cao, Di Xiao
Nat. Commun., 2024, 15 (1), 4223.
DOI: 10.1038/s41467-024-48511-x

Dynamics of growing carbon nanotube interfaces probed by machine learning-enabled molecular simulations

Daniel Hedman, Ben McLean, Christophe Bichara, Shigeo Maruyama, J. Andreas Larsson, Feng Ding
Nat. Commun., 2024, 15 (1), 4076.
DOI: 10.1038/s41467-024-47999-7

Complexity of many-body interactions in transition metals via machine- learned force fields from the TM23 data set

Cameron J. Owen, Steven B. Torrisi, Yu Xie, Simon Batzner, Kyle Bystrom, Jennifer Coulter, Albert Musaelian, Lixin Sun, Boris Kozinsky
Npj Comput. Mater, 2024, 10 (1), 92.
DOI: 10.1038/s41524-024-01264-z

Unconventional mechanical and thermal behaviours of MOF CALF-20

Dong Fan, Supriyo Naskar, Guillaume Maurin
Nat. Commun., 2024, 15 (1), 3251.
DOI: 10.1038/s41467-024-47695-6

Realization of sextuple polarization states and interstate switching in antiferroelectric CuInP2S6

Tao Li, Yongyi Wu, Guoliang Yu, Shengxian Li, Yifeng Ren, Yadong Liu, Jiarui Liu, Hao Feng, Yu Deng, Mingxing Chen, Zhenyu Zhang, Tai Min
Nat. Commun., 2024, 15 (1), 2653.
DOI: 10.1038/s41467-024-46891-8

Unraveling the crystallization kinetics of the Ge2Sb2Te5 phase change compound with a machine-learned interatomic potential

Omar {Abou El Kheir}, Luigi Bonati, Michele Parrinello, Marco Bernasconi
Npj Comput. Mater, 2024, 10 (1), 33.
DOI: 10.1038/s41524-024-01217-6

Principal component analysis enables the design of deep learning potential precisely capturing LLZO phase transitions

Yiwei You, Dexin Zhang, Fulun Wu, Xinrui Cao, Yang Sun, Zi-Zhong Zhu, Shunqing Wu
Npj Comput. Mater, 2024, 10 (1), 57.
DOI: 10.1038/s41524-024-01240-7

Robust training of machine learning interatomic potentials with dimensionality reduction and stratified sampling

Ji Qi, Tsz Wai Ko, Brandon C. Wood, Tuan Anh Pham, Shyue Ping Ong
Npj Comput. Mater, 2024, 10 (1), 43.
DOI: 10.1038/s41524-024-01227-4

Machine learned force-fields for an Ab-initio quality description of metal-organic frameworks

Sandro Wieser, Egbert Zojer
Npj Comput. Mater, 2024, 10 (1), 18.
DOI: 10.1038/s41524-024-01205-w

Enhancing ReaxFF for molecular dynamics simulations of lithium-ion batteries: an interactive reparameterization protocol

Paolo {De Angelis}, Roberta Cappabianca, Matteo Fasano, Pietro Asinari, Eliodoro Chiavazzo
Sci. Rep., 2024, 14 (1), 978.
DOI: 10.1038/s41598-023-50978-5

Ce-doped copper oxide and copper vanadate Cu3VO4 hybrid for boosting nitrate electroreduction to ammonia

Meng Zhang, Yang Liu, Yun Duan, Xu Liu, Yan-Qin Wang
J. Colloid Interface Sci., 2024, 671, 258–269.
DOI: 10.1016/j.jcis.2024.05.189

Construction and application of deep learning potential for CaO under high pressure

Xinwei Wang, Zi-Jiang Liu, Jin-Shan Feng, Meng-Ru Chen, Liang Li, Xiao-Wei Sun, Fubo Tian
Comput. Mater. Sci., 2024, 244, 113154.
DOI: 10.1016/j.commatsci.2024.113154

Pressure-driven enhancement of phonon contribution to the thermal conductivity of Iridium

Niraj Bhatt, Pravin Karna, Sandip Thakur, Ashutosh Giri
Int. J. Heat Mass Transf., 2024, 229, 125673.
DOI: 10.1016/j.ijheatmasstransfer.2024.125673

Selective activation of methane on hydroxyapatite surfaces: Insights from machine learning and density functional theory

Jing Wang, Xinrong Yan, Xin Wang, Mingli Yang, Dingguo Xu
Nano Energy, 2024, 127, 109762.
DOI: 10.1016/j.nanoen.2024.109762

Machine learning model to efficiently predict the structure and properties of MgCl2-NaCl-KCl melts

Taixi Feng, Jia Zhao, Guimin Lu
Sol. Energy Mater. Sol. Cells, 2024, 272, 112903.
DOI: 10.1016/j.solmat.2024.112903

Exploring dielectric properties in atomistic models of amorphous boron nitride

Thomas Galvani, Ali K Hamze, Laura Caputo, Onurcan Kaya, Simon M-M Dubois, Luigi Colombo, Viet-Hung Nguyen, Yongwoo Shin, Hyeon-Jin Shin, Jean-Christophe Charlier, Stephan Roche
J. Phys. Mater., 2024, 7 (3), 35003.
DOI: 10.1088/2515-7639/ad4c06

Dual-channel phonon transport leads to low thermal conductivity in pyrochlore La2Hf2O7

Junwei Che, Wenjie Huang, Guoliang Ren, Jiajun Linghu, Xuezhi Wang
Ceram. Int., 2024, 50 (13), 22865–22873.
DOI: 10.1016/j.ceramint.2024.04.011

Unveiling the crystallization mechanism of cadmium selenide via molecular dynamics simulation with machine-learning-based deep potential

Linshuang Zhang, Manyi Yang, Shiwei Zhang, Haiyang Niu
J. Mater. Sci. Technol., 2024, 185, 23–31.
DOI: 10.1016/j.jmst.2023.09.059

The nucleation and growth mechanism of solid-state amorphization and diffusion behavior at the W-Cu interface

Kai Wang, Guoqing Yao, Mengwei Lv, Zumin Wang, Yuan Huang, Wei Xi
Compos. B: Eng., 2024, 279, 111452.
DOI: 10.1016/j.compositesb.2024.111452

Machine learning molecular dynamics insight into high interface stability and fast kinetics of low-cost magnesium chloride amine electrolyte for rechargeable magnesium batteries

Haiming Hua, Fei Wang, Feng Wang, Jiayue Wu, Yaoqi Xu, Yichao Zhuang, Jing Zeng, Jinbao Zhao
Energy Storage Mater., 2024, 70, 103470.
DOI: 10.1016/j.ensm.2024.103470

Prediction of Cr(VI) and As(V) adsorption on goethite using hybrid surface complexation-machine learning model

Kai Chen, Chuling Guo, Chaoping Wang, Shoushi Zhao, Beiyi Xiong, Guining Lu, John R. Reinfelder, Zhi Dang
Water Res., 2024, 256, 121580.
DOI: 10.1016/j.watres.2024.121580

Thermal transports of 2D phosphorous carbides by machine learning molecular dynamics simulations

Chenyang Cao, Shuo Cao, YuanXu Zhu, Haikuan Dong, Yanzhou Wang, Ping Qian
Int. J. Heat Mass Transf., 2024, 224, 125359.
DOI: 10.1016/j.ijheatmasstransfer.2024.125359

Unraveling medium-range order and melting mechanism of ZIF-4 under high temperature

Zuhao Shi, Bin Liu, Yuanzheng Yue, Arramel Arramel, Neng Li
J Am Ceram Soc., 2024, 107 (6), 3845–3856.
DOI: 10.1111/jace.19741

A deep-neural network potential to study transformation-induced plasticity in zirconia

Jin-Yu Zhang, Ga"el Huynh, Fu-Zhi Dai, Tristan Albaret, Shi-Hao Zhang, Shigenobu Ogata, David Rodney
J. Eur. Ceram. Soc., 2024, 44 (6), 4243–4254.
DOI: 10.1016/j.jeurceramsoc.2024.01.007

IR Spectroscopy of Carboxylate-Passivated Semiconducting Nanocrystals: Simulation and Experiment

Jakub K. Sowa, Danielle M. Cadena, Arshad Mehmood, Benjamin G. Levine, Sean T. Roberts, Peter J. Rossky
J. Phys. Chem. C, 2024, 128 (21), 8724–8731.
DOI: 10.1021/acs.jpcc.4c01988

Accelerating Computation of Acidity Constants and Redox Potentials for Aqueous Organic Redox Flow Batteries by Machine Learning Potential- Based Molecular Dynamics

Feng Wang, Zebing Ma, Jun Cheng
J. Am. Chem. Soc., 2024, 146 (21), 14566–14575.
DOI: 10.1021/jacs.4c01221

First-principles-based machine learning interatomic potential for molecular dynamics simulations of 2D lateral MoS2/WS2 heterostructures

Xiangjun Liu, Baolong Wang, Kun Jia, Quanjie Wang, Di Wang, Yucheng Xiong
J. Appl. Phys., 2024, 135 (20).
DOI: 10.1063/5.0201527

On-the-fly kinetic Monte Carlo simulations with neural network potentials for surface diffusion and reaction

Tomoko Yokaichiya, Tatsushi Ikeda, Koki Muraoka, Akira Nakayama
J. Chem. Phys., 2024, 160 (20), 204108.
DOI: 10.1063/5.0199240

Competing Reaction Mechanisms of Peptide Bond Formation in Water Revealed by Deep Potential Molecular Dynamics and Path Sampling

Rolf David, I\~naki Tu\~n'on, Damien Laage
J. Am. Chem. Soc., 2024, 146 (20), 14213–14224.
DOI: 10.1021/jacs.4c03445

Ultra-flat bands at large twist angles in group-V twisted bilayer materials

Zhi-Xiong Que, Shu-Zong Li, Bo Huang, Zhi-Xiong Yang, Wei- Bing Zhang
J. Chem. Phys., 2024, 160 (19), 194710.
DOI: 10.1063/5.0197757

Revealing the reconstruction mechanism of AgPd nanoalloys under fluorination based on a multiscale deep learning potential

Longfei Guo, Shuang Shan, Xiaoqing Liu, Wanxuan Zhang, Peng Xu, Fanzhe Ma, Zhen Li, Chongyang Wang, Junpeng Wang, Fuyi Chen
J. Chem. Phys., 2024, 160 (17), 174313.
DOI: 10.1063/5.0205616

Perspective: Atomistic simulations of water and aqueous systems with machine learning potentials

Amir Omranpour, Pablo {Montero De Hijes}, J"org Behler, Christoph Dellago
J. Chem. Phys., 2024, 160 (17), 170901.
DOI: 10.1063/5.0201241

Exploring the Relationship between Composition and Li-Ion Conductivity in the Amorphous Li-La-Zr-O System

Dexin Zhang, Yiwei You, Fulun Wu, Xinrui Cao, Tie-Yu L"u, Yang Sun, Zi-Zhong Zhu, Shunqing Wu
Acs Mater. Lett,, 2024, 6 (5), 1849–1855.
DOI: 10.1021/acsmaterialslett.3c01558

Quasi-Classical Trajectory Calculation of Rate Constants Using an Ab Initio Trained Machine Learning Model (aML-MD) with Multifidelity Data

Zhiyu Shi, Aditya Dilip Lele, Ahren W. Jasper, Stephen J. Klippenstein, Yiguang Ju
J. Phys. Chem., A, 2024, 128 (17), 3449–3457.
DOI: 10.1021/acs.jpca.4c00750

Exploring Li-Ion Transport Properties of Li3TiCl6: A Machine Learning Molecular Dynamics Study

Selva Chandrasekaran Selvaraj, Volodymyr Koverga, Anh T. Ngo
J. Electrochem., Soc,, 2024, 171 (5), 50544.
DOI: 10.1149/1945-7111/ad4ac9

Deep-learning interatomic potential for iron at extreme conditions

Zhi Li, Sandro Scandolo
Phys. Rev. B, 2024, 109 (18), 184108.
DOI: 10.1103/PhysRevB.109.184108

Revisiting the phase diagram and piezoelectricity of lead zirconate titanate from first principles

Yubai Shi, Ri He, Bingwen Zhang, Zhicheng Zhong
Phys. Rev. B, 2024, 109 (17), 174104.
DOI: 10.1103/PhysRevB.109.174104

Structural and mechanical properties of monolayer amorphous carbon and boron nitride

Xi Zhang, Yu-Tian Zhang, Yun-Peng Wang, Shiyu Li, Shixuan Du, Yu-Yang Zhang, Sokrates T. Pantelides
Phys. Rev. B, 2024, 109 (17), 174106.
DOI: 10.1103/PhysRevB.109.174106

Non-equilibrium nature of fracture determines the crack paths

Pengjie Shi, Shizhe Feng, Zhiping Xu
Extrem. Mech. Lett., 2024, 68, 102151.
DOI: 10.1016/j.eml.2024.102151

Understanding cellulose pyrolysis via ab initio deep learning potential field

Yuqin Xiao, Yuxin Yan, Hainam Do, Richard Rankin, Haitao Zhao, Ping Qian, Keke Song, Tao Wu, Cheng Heng Pang
Bioresour. Technol., 2024, 399, 130590.
DOI: 10.1016/j.biortech.2024.130590

Lattice thermal conductivity and mechanical properties of the single- layer penta-NiN2 explored by a deep-learning interatomic potential

Pedram Mirchi, Christophe Adessi, Samy Merabia, Ali Rajabpour
Phys. Chem. Chem. Phys., 2024, 26 (19), 14216–14227.
DOI: 10.1039/d4cp00997e

Molecular dynamics simulations of heat transport using machine-learned potentials: A mini-review and tutorial on GPUMD with neuroevolution potentials

Haikuan Dong, Yongbo Shi, Penghua Ying, Ke Xu, Ting Liang, Yanzhou Wang, Zezhu Zeng, Xin Wu, Wenjiang Zhou, Shiyun Xiong, Shunda Chen, Zheyong Fan
J. Appl. Phys., 2024, 135 (16).
DOI: 10.1063/5.0200833

Neural network molecular dynamics study of LiGe2(PO4)3: Investigation of structure

I.A. Balyakin, M.I. Vlasov, S.V. Pershina, D.M. Tsymbarenko, A.A. Rempel
Comput. Mater. Sci., 2024, 239, 112979.
DOI: 10.1016/j.commatsci.2024.112979

Validation workflow for machine learning interatomic potentials for complex ceramics

Kimia Ghaffari, Salil Bavdekar, Douglas E. Spearot, Ghatu Subhash
Comput. Mater. Sci., 2024, 239, 112983.
DOI: 10.1016/j.commatsci.2024.112983

Deep Potential fitting and mechanical properties study of MgAlSi alloy

Chang-sheng Zhu, Wen-jing Dong, Zi-hao Gao, Li-jun Wang, Guang-zhao Li
Comput. Mater. Sci., 2024, 239, 112966.
DOI: 10.1016/j.commatsci.2024.112966

Investigation of the Degradation of LiPF6- in Polar Solvents through Deep Potential Molecular Dynamics

Da Zhu, Li Sheng, Taiping Hu, Sian Chen, Mengchao Shi, Haiming Hua, Kai Yang, Jianlong Wang, Yaping Tang, Xiangming He, Hong Xu
J. Phys. Chem. Lett., 2024, 15 (15), 4024–4030.
DOI: 10.1021/acs.jpclett.4c00575

Collaboration on Machine-Learned Potentials with IPSuite: A Modular Framework for Learning-on-the-Fly

Fabian Zills, Moritz Ren'e Sch"afer, Nico Segreto, Johannes K"astner, Christian Holm, Samuel Tovey
J. Phys. Chem., B, 2024, 128 (15), 3662–3676.
DOI: 10.1021/acs.jpcb.3c07187

Insights into Lithium Sulfide Glass Electrolyte Structures and Ionic Conductivity via Machine Learning Force Field Simulations

Rui Zhou, Kun Luo, Steve W. Martin, Qi An
Acs Appl. Mater. Interfaces, 2024, 16 (15), 18874–18887.
DOI: 10.1021/acsami.4c00618

Theoretical Study on Ion Diffusion Mechanism in W-Doped K3SbS4 as Solid-State Electrolyte for K-Ion Batteries

Rongyu Zhang, Shifeng Xu, Liyan Wang, Chuanyun Wang, Yongjun Zhou, Zhe L"u, Wenbo Li, Dan Xu, Sai Wang, Xu Yang
Inorg. Chem., 2024, 63 (15), 6743–6751.
DOI: 10.1021/acs.inorgchem.4c00074

Investigation of the effect of off-stoichiometric composition on oxygen transport in layered perovskite materials for SOFC cathode

Sung Hun Woo, Hyun Joo Yang, Yongseon Kim
Mater. Lett., 2024, 361, 136114.
DOI: 10.1016/j.matlet.2024.136114

Elucidating the local structure and properties of molten Na2CO3-K2CO3 salts using Machine Learning-Driven molecular dynamics

Taixi Feng, Bo Yang, Jia Zhao, Guimin Lu
Chem. Eng. Sci., 2024, 288, 119836.
DOI: 10.1016/j.ces.2024.119836

Development of machine learning force field for thermal conductivity analysis in MoAlB: Insights into anisotropic heat transfer mechanisms

Hanchao Zhang, Guoliang Ren, Peng Jia, Xiaofeng Zhao, Na Ni
Ceram. Int., 2024, 50 (8), 13740–13749.
DOI: 10.1016/j.ceramint.2024.01.288

Training machine learning potentials for reactive systems: A Colab tutorial on basic models

Xiaoliang Pan, Ryan Snyder, Jia-Ning Wang, Chance Lander, Carly Wickizer, Richard Van, Andrew Chesney, Yuanfei Xue, Yuezhi Mao, Ye Mei, Jingzhi Pu, Yihan Shao
J. Comput. Chem., 2024, 45 (10), 638–647.
DOI: 10.1002/jcc.27269

Unified deep learning network for enhanced accuracy in predicting thermal conductivity of bilayer graphene, hexagonal boron nitride, and their heterostructures

Rongkun Chen, Yu Tian, Jiayi Cao, Weina Ren, Shiqian Hu, Chunhua Zeng
J. Appl. Phys., 2024, 135 (14).
DOI: 10.1063/5.0201698

Many-body interactions and deep neural network potentials for water

Yaoguang Zhai, Richa Rashmi, Etienne Palos, Francesco Paesani
J. Chem. Phys., 2024, 160 (14), 144501.
DOI: 10.1063/5.0203682

Transferable Water Potentials Using Equivariant Neural Networks

Tristan Maxson, Tibor Szilv'asi
J. Phys. Chem. Lett., 2024, 15 (14), 3740–3747.
DOI: 10.1021/acs.jpclett.4c00605

Accurate description of ion migration in solid-state ion conductors from machine-learning molecular dynamics

Takeru Miyagawa, Namita Krishnan, Manuel Grumet, Christian Rever'on Baecker, Waldemar Kaiser, David A. Egger
J. Mater. Chem. A, 2024, 12 (19), 11344–11361.
DOI: 10.1039/d4ta00452c

Effect of Interlayer Bonding on Superlubric Sliding of Graphene Contacts: A Machine-Learning Potential Study

Penghua Ying, Amir Natan, Oded Hod, Michael Urbakh
Acs Nano, 2024, 18 (14), 10133–10141.
DOI: 10.1021/acsnano.3c13099

Prediction of phonon properties of cubic boron nitride with vacancy defects and isotopic disorders by using a neural network potential

Jingwen Zhang, Junjie Zhang, Guoqiang Bao, Zehan Li, Xiaobo Li, Te-Huan Liu, Ronggui Yang
Appl. Phys. Lett., 2024, 124 (15).
DOI: 10.1063/5.0198431

Hydrocarbon Species on the Cu(111) Surface Studied with a Neural Network Potential

Sen Xu, Liling Wu, Yi Fan, Yufeng Liu, Xiongzhi Zeng, Zhenyu Li
J. Phys. Chem. C, 2024, 128 (13), 5697–5707.
DOI: 10.1021/acs.jpcc.3c08138

Long-range proton and hydroxide ion transfer dynamics at the water/CeO2 interface in the nanosecond regime: reactive molecular dynamics simulations and kinetic analysis

Taro Kobayashi, Tatsushi Ikeda, Akira Nakayama
Chem. Sci., 2024, 15 (18), 6816–6832.
DOI: 10.1039/d4sc01422g

Exploring diffusion behavior of superionic materials using machine- learning interatomic potentials

Cheng-Rong Hsing, Duc-Long Nguyen, Ching-Ming Wei
Phys, Rev, Mater., 2024, 8 (4), 43806.
DOI: 10.1103/PhysRevMaterials.8.043806

Photocatalytic activity of dual defect modified graphitic carbon nitride is robust to tautomerism: machine learning assisted ab initio quantum dynamics

Sraddha Agrawal, Bipeng Wang, Yifan Wu, David Casanova, Oleg V. Prezhdo
Nanoscale, 2024, 16 (18), 8986–8995.
DOI: 10.1039/d4nr00606b

Hydrogen Diffusion in the Lower Mantle Revealed by Machine Learning Potentials

Yihang Peng, Jie Deng
Jgr Solid Earth, 2024, 129 (4).
DOI: 10.1029/2023JB028333

Deciphering the controlling factors for phase transitions in zeolitic imidazolate frameworks

Tao Du, Shanwu Li, Sudheer Ganisetti, Mathieu Bauchy, Yuanzheng Yue, Morten M. Smedskjaer
Natl. Sci. Rev., 2024, 11 (4), nwae023.
DOI: 10.1093/nsr/nwae023

Machine learning heralding a new development phase in molecular dynamics simulations

Eva Pra\vsnikar, Martin Ljubi\vc, Andrej Perdih, Jure Bori\vsek
Artif Intell Rev, 2024, 57 (4), 102.
DOI: 10.1007/s10462-024-10731-4

Machine learning-based prediction of mechanical properties of N-doped $\gamma$-graphdiyne

Cun Zhang, Bolin Yang, Zhilong Peng, Shaohua Chen
Sci. China Mater., 2024, 67 (4), 1129–1139.
DOI: 10.1007/s40843-023-2733-7

Determining the thermal conductivity and phonon behavior of SiC materials with quantum accuracy via deep learning interatomic potential model

Baoqin Fu, Yandong Sun, Wanrun Jiang, Fu Wang, Linfeng Zhang, Han Wang, Ben Xu
J. Nucl. Mater., 2024, 591, 154897.
DOI: 10.1016/j.jnucmat.2024.154897

A 3D metallic porous sulfurized carbon anode identified by global structure search for Na-ion batteries with fast diffusion kinetics

Mohammed M. Obeid, Jiahui Liu, Penghu Du, Tongyu Liu, Qiang Sun
J. Energy Storage, 2024, 82, 110587.
DOI: 10.1016/j.est.2024.110587

Probing the critical point of MgSiO3 using deep potential simulation

Fei-Yang Xu, Zhi-Guo Li, Xiang-Rong Chen, Hua Y. Geng, Lei Liu, Jianbo Hu
J. Appl. Phys., 2024, 135 (12).
DOI: 10.1063/5.0189696

Ab Initio Driven Exploration on the Thermal Properties of Al-Li Alloy

Xiaoya Chang, Yongchao Wu, Qingzhao Chu, Gang Zhang, Dongping Chen
Acs Appl. Mater. Interfaces, 2024, 16 (12), 14954–14964.
DOI: 10.1021/acsami.4c01480

Compositional transferability of deep potential in molten LiF-BeF2 and LaF3 mixtures: prediction of density, viscosity, and local structure

Xuejiao Li, Tingrui Xu, Yu Gong
Phys. Chem. Chem. Phys., 2024, 26 (15), 12044–12052.
DOI: 10.1039/d4cp00079j

Compression Eliminates Charge Traps by Stabilizing Perovskite Grain Boundary Structures: An Ab Initio Analysis with Machine Learning Force Field

Dongyu Liu, Yifan Wu, Mikhail R. Samatov, Andrey S. Vasenko, Evgueni V. Chulkov, Oleg V. Prezhdo
Chem. Mater.: Publ. Am. Chem. Soc., 2024, 36 (6), 2898–2906.
DOI: 10.1021/acs.chemmater.3c03261

Neural Network-Based Sum-Frequency Generation Spectra of Pure and Acidified Water Interfaces with Air

Miguel {de la Puente}, Axel Gomez, Damien Laage
J. Phys. Chem. Lett., 2024, 15 (11), 3096–3102.
DOI: 10.1021/acs.jpclett.4c00113

A neural network potential energy surface assisted molecular dynamics study on the pyrolysis behavior of two spiro-hydrocarbons

Hang Xiao, Bin Yang
Phys. Chem. Chem. Phys., 2024, 26 (15), 11867–11879.
DOI: 10.1039/d3cp05425j

Thermal Conductivity of MgSiO3\ens uremath- H2O System Determined by Machine Learning Potentials

Yihang Peng, Jie Deng
Geophys. Res. Lett., 2024, 51 (5).
DOI: 10.1029/2023GL107245

The thermal decomposition mechanism of RDX/AP composites: ab initio neural network MD simulations

Kehui Pang, Mingjie Wen, Xiaoya Chang, Yabei Xu, Qingzhao Chu, Dongping Chen
Phys. Chem. Chem. Phys., 2024, 26 (15), 11545–11557.
DOI: 10.1039/d3cp05709g

Electrical conductivity of copper under ultrahigh pressure and temperature conditions by both experiments and first-principles simulations

Bo Gan, Jun Li, Junjie Gao, Qiru Zeng, Wenhao Song, Yukai Zhuang, Yingxin Hua, Qiang Wu, Gang Jiang, Yuan Yin, Youjun Zhang
Phys. Rev. B, 2024, 109 (11), 115129.
DOI: 10.1103/PhysRevB.109.115129

A reactive molecular dynamics model for uranium/hydrogen containing systems

Artem Soshnikov, Rebecca Lindsey, Ambarish Kulkarni, Nir Goldman
J. Chem. Phys., 2024, 160 (9), 94117.
DOI: 10.1063/5.0183610

Deep Potential Molecular Dynamics Study of Propane Oxidative Dehydrogenation

Ziyi Liu, An-Hui Lu, Dongqi Wang
J. Phys. Chem., A, 2024, 128 (9), 1656–1664.
DOI: 10.1021/acs.jpca.3c07859

Graph theory and graph neural network assisted high-throughput crystal structure prediction and screening for energy conversion and storage

Joshua Ojih, Mohammed Al-Fahdi, Yagang Yao, Jianjun Hu, Ming Hu
J. Mater. Chem. A, 2024, 12 (14), 8502–8515.
DOI: 10.1039/d3ta06190f

Visualizing the SEI formation between lithium metal and solid-state electrolyte

Fucheng Ren, Yuqi Wu, Wenhua Zuo, Wengao Zhao, Siyuan Pan, Hongxin Lin, Haichuan Yu, Jing Lin, Min Lin, Xiayin Yao, Torsten Brezesinski, Zhengliang Gong, Yong Yang
Energy Env., Sci,, 2024, 17 (8), 2743–2752.
DOI: 10.1039/d3ee03536k

Machine learning potential for modelling H2 adsorption/diffusion in MOFs with open metal sites

Shanping Liu, Romain Dupuis, Dong Fan, Salma Benzaria, Mickaele Bonneau, Prashant Bhatt, Mohamed Eddaoudi, Guillaume Maurin
Chem. Sci., 2024, 15 (14), 5294–5302.
DOI: 10.1039/d3sc05612k

Modifying ring structures in lithium borate glasses under compression: MD simulations using a machine-learning potential

Shingo Urata, Aik Rui Tan, Rafael G'omez-Bombarelli
Phys, Rev, Mater., 2024, 8 (3), 33602.
DOI: 10.1103/PhysRevMaterials.8.033602

Thermoelastic properties of bridgmanite using deep-potential molecular dynamics

Tianqi Wan, Chenxing Luo, Yang Sun, Renata M. Wentzcovitch
Phys. Rev. B, 2024, 109 (9), 94101.
DOI: 10.1103/PhysRevB.109.094101

Understanding the dielectric relaxation of liquid water using neural network potential and classical pairwise potential

Jae Hyun Ryu, Ji Woong Yu, Tae Jun Yoon, Won Bo Lee
J. Mol. Liq., 2024, 397, 124054.
DOI: 10.1016/j.molliq.2024.124054

Synthetic pre-training for neural-network interatomic potentials

John L A Gardner, Kathryn T Baker, Volker L Deringer
Mach, Learn.,: Sci, Technol,, 2024, 5 (1), 15003.
DOI: 10.1088/2632-2153/ad1626

Review of deep learning algorithms in molecular simulations and perspective applications on petroleum engineering

Jie Liu, Tao Zhang, Shuyu Sun
Geosci. Front., 2024, 15 (2), 101735.
DOI: 10.1016/j.gsf.2023.101735

Machine-learned atomic cluster expansion potentials for fast and quantum-accurate thermal simulations of wurtzite AlN

Guang Yang, Yuan-Bin Liu, Lei Yang, Bing-Yang Cao
Arxiv, 2024, 135 (8).
DOI: 10.1063/5.0188905

Highly efficient and transferable interatomic potentials for $\alpha$-iron and $\alpha$-iron/hydrogen binary systems using deep neural networks

Shihao Zhang, Fanshun Meng, Rong Fu, Shigenobu Ogata
Comput. Mater. Sci., 2024, 235, 112843.
DOI: 10.1016/j.commatsci.2024.112843

Accurate and Transferable Machine Learning Potential for Molecular Dynamics Simulation of Sodium Silicate Glasses

Marco Bertani, Thibault Charpentier, Francesco Faglioni, Alfonso Pedone
J. Chem. Theory Comput., 2024, 20 (3), 1358–1370.
DOI: 10.1021/acs.jctc.3c01115

Development of a Neural Network Potential for Modeling Molten LiCl/KCl Salts: Bridging Efficiency and Accuracy

Abdullah {Bin Faheem}, Kyung-Koo Lee
J. Phys. Chem. C, 2024, 128 (5), 2163–2178.
DOI: 10.1021/acs.jpcc.3c07010

Screening Cu-Zeolites for Methane Activation Using Curriculum-Based Training

Jiawei Guo, Tyler Sours, Sam Holton, Chenghan Sun, Ambarish R. Kulkarni
Acs Catal., 2024, 14 (3), 1232–1242.
DOI: 10.1021/acscatal.3c05275

Strain-induced two-dimensional relaxor ferroelectrics in Se-doped PbTe

Zhanpeng Gong, Jefferson Zhe Liu, Xiangdong Ding, Jun Sun, Junkai Deng
Phys. Rev. B, 2024, 109 (5), 54117.
DOI: 10.1103/PhysRevB.109.054117

Effects of four-phonon interaction and vacancy defects on the thermal conductivity of the low-temperature phase of SnSe

Pan Zhang, Dan Jin, Mi Qin, Zhenhua Zhang, Yong Liu, Ziyu Wang, Zhihong Lu, Rui Xiong, Jing Shi
Phys, Rev, Appl., 2024, 21 (2), 24043.
DOI: 10.1103/PhysRevApplied.21.024043

Implementation and Validation of an OpenMM Plugin for the Deep Potential Representation of Potential Energy

Ye Ding, Jing Huang
Int. J. Mol. Sci., 2024, 25 (3), 1448.
DOI: 10.3390/ijms25031448

Synthesis and magnetic properties of some monotectic composites containing ultra-dispersed particles of YGdTbDyHo high-entropy alloy

S.A. Uporov, E.V. Sterkhov, I.A. Balyakin, V.A. Bykov, I.S. Sipatov, A.A. Rempel
Intermetallics, 2024, 165, 108121.
DOI: 10.1016/j.intermet.2023.108121

Combining Force Fields and Neural Networks for an Accurate Representation of Bonded Interactions

Ganesh Kamath, Alexey Illarionov, Serzhan Sakipov, Leonid Pereyaslavets, Igor V. Kurnikov, Oleg Butin, Ekaterina Voronina, Ilya Ivahnenko, Igor Leontyev, Grzegorz Nawrocki, Mikhail Darkhovskiy, Michael Olevanov, Yevhen K. Cherniavskyi, Christopher Lock, Sean Greenslade, YuChun Chen, Roger D. Kornberg, Michael Levitt, Boris Fain
J. Phys. Chem., A, 2024, 128 (4), 807–812.
DOI: 10.1021/acs.jpca.3c07598

Grain refinement mechanism of boron addition within Ti-Al alloy

B. Zhai, J. Chang, G. X. Li, H. P. Wang
Appl. Phys. A, 2024, 130 (2), 106.
DOI: 10.1007/s00339-024-07277-1

Effect of electric fields on tungsten distribution in Na2WO4-WO3 molten salt

Yuliang Guo, Xiaobo Sun, Handong Jiao, Liwen Zhang, Wenxuan Qin, Xiaoli Xi, Zuoren Nie
Phys. Chem. Chem. Phys., 2024, 26 (8), 6590–6599.
DOI: 10.1039/d3cp06202c

Structure and polymerization of liquid sulfur across the $\lambda$-transition

Manyi Yang, Enrico Trizio, Michele Parrinello
Chem. Sci., 2024, 15 (9), 3382–3392.
DOI: 10.1039/d3sc06282a

Deep learning interatomic potential for thermal and defect behaviour of aluminum nitride with quantum accuracy

Tao Li, Qing Hou, Jie-chao Cui, Jia-hui Yang, Ben Xu, Min Li, Jun Wang, Bao-qin Fu
Comput. Mater. Sci., 2024, 232, 112656.
DOI: 10.1016/j.commatsci.2023.112656

Illuminating the mechanical responses of amorphous boron nitride through deep learning: A molecular dynamics study

Shin-Pon Ju, Chao-Chuan Huang, Hsing-Yin Chen
Comput. Mater. Sci., 2024, 232, 112664.
DOI: 10.1016/j.commatsci.2023.112664

Study of high-pressure thermophysical properties of orthocarbonate Sr3CO5 using deep learning molecular dynamics simulations

Xin-Xuan Wang, Ting Song, Zhen-Shuai Lei, Xiao-Wei Sun, Jun-Hong Tian, Zi-Jiang Liu
Phys. Chem. Chem. Phys., 2024, 26 (7), 6351–6361.
DOI: 10.1039/d3cp04833k

Vacancy-induced phonon localization in boron arsenide using a unified neural network interatomic potential

Junjie Zhang, Hao Zhang, Jing Wu, Xin Qian, Bai Song, Cheng-Te Lin, Te-Huan Liu, Ronggui Yang
Cell Rep. Phys. Sci., 2024, 5 (1), 101760.
DOI: 10.1016/j.xcrp.2023.101760

Unravelling abnormal in-plane stretchability of two-dimensional metal- organic frameworks by machine learning potential molecular dynamics

Dong Fan, Aydin Ozcan, Pengbo Lyu, Guillaume Maurin
Nanoscale, 2024, 16 (7), 3438–3447.
DOI: 10.1039/d3nr05966a

Hydration MgCl2-NaCl-KCl molten salt using a novel approach for training machine learning potential

Taixi Feng, Guimin Lu
J. Mol. Liq., 2024, 394, 123533.
DOI: 10.1016/j.molliq.2023.123533

Nuclear quantum effects in the acetylene:ammonia plastic co-crystal

Atul C. Thakur, Richard C. Remsing
J. Chem. Phys., 2024, 160 (2), 24502.
DOI: 10.1063/5.0179161

Molecular Simulation of Lithium Carbonate Reactive Vapor-Liquid Equilibria Using a Deep Potential Model

Dina Kussainova, Athanassios Z. Panagiotopoulos
J. Chem. Eng. Data, 2024, 69 (1), 204–214.
DOI: 10.1021/acs.jced.3c00580

Development of NaCl-MgCl2-CaCl2 Ternary Salt for High-Temperature Thermal Energy Storage Using Machine Learning

Wenhao Dong, Heqing Tian, Wenguang Zhang, Jun-Jie Zhou, Xinchang Pang
Acs Appl. Mater. Interfaces, 2024, 16 (1), 530–539.
DOI: 10.1021/acsami.3c13412

TrIP-Transformer Interatomic Potential Predicts Realistic Energy Surface Using Physical Bias

Bryce E. Hedelius, Damon Tingey, Dennis {Della Corte}
J. Chem. Theory Comput., 2024, 20 (1), 199–211.
DOI: 10.1021/acs.jctc.3c00936

Confinement Effects on Proton Transfer in TiO2 Nanopores from Machine Learning Potential Molecular Dynamics Simulations

Hyuna Kwon, Marcos F. {Calegari Andrade}, Shane Ardo, Daniel V. Esposito, Tuan Anh Pham, Tadashi Ogitsu
Acs Appl. Mater. Interfaces, 2024, 16 (24), 31687–31695.
DOI: 10.1021/acsami.4c02339

An ab- initio deep neural network potential for accurate large-scale simulations of the muscovite mica-water interface

Abhinav S. Raman, Annabella Selloni
Mol. Phys., 2024.
DOI: 10.1080/00268976.2024.2365430

Applications of machine-learning interatomic potentials for modeling ceramics, glass, and electrolytes: A review

Shingo Urata, Marco Bertani, Alfonso Pedone
J Am Ceram Soc., 2024.
DOI: 10.1111/jace.19934

Accelerating Molecular Vibrational Spectra Simulations with a Physically Informed Deep Learning Model

Yuzhuo Chen, Sebastian V. Pios, Maxim F. Gelin, Lipeng Chen
J. Chem. Theory Comput., 2024, 20 (11), 4703–4710.
DOI: 10.1021/acs.jctc.4c00173

Structural Origin of the Deformation Propensity of Zeolitic Imidazolate Framework Glasses

Tao Du, Xuan Ge, Fengming Cao, Han Liu, Caijuan Shi, Junwei Ding, Daming Sun, Qiangqiang Zhang, Yuanzheng Yue, Morten M. Smedskjaer
Chem. Mater., 2024, 36 (12), 6167–6179.
DOI: 10.1021/acs.chemmater.4c00921

Phase Transition in Silicon from Machine Learning Informed Metadynamics

Mangladeep Bhullar, Zihao Bai, Akinwumi Akinpelu, Yansun Yao
Chemphyschem: Eur. J. Chem. Phys. Phys. Chem., 2024, e202400090.
DOI: 10.1002/cphc.202400090

The structural evolution of SiBCNZr amorphous ceramics analyzed by machine learning potential

Meng Zhang, Siyan Deng, Jianghong Zhang, Daxin Li, Dechang Jia, Yu Zhou
Ceram. Int., 2024, 50 (17), 30008–30017.
DOI: 10.1016/j.ceramint.2024.05.296

Machine Learning Molecular Dynamics Shows Anomalous Entropic Effect on Catalysis through Surface Pre-melting of Nanoclusters

Fu-Qiang Gong, Yun-Pei Liu, Ye Wang, Weinan E, Zhong-Qun Tian, Jun Cheng
Angew. Chem. (International, Engl.), 2024, 63 (27), e202405379.
DOI: 10.1002/anie.202405379

Deep potential molecular dynamic and electrochemical experiments to reveal the structure and behavior of Mn(II) in magnesium electrolysis

Taixi Feng, Zhaoting Liu, Guimin Lu
Braz. J. Chem. Eng., 2024.
DOI: 10.1007/s43153-024-00465-9

Stacked High-Entropy Hydroxides Promote Charge Transfer Kinetics for Photoelectrochemical Water Splitting

Lei Wang, Zehua Gao, Kerong Su, Nhat Truong Nguyen, Rui-Ting Gao, Junxiang Chen, Lei Wang
Adv Funct Mater., 2024.
DOI: 10.1002/adfm.202403948

Improving the reliability of machine learned potentials for modeling inhomogeneous liquids

Kamron Fazel, Nima Karimitari, Tanooj Shah, Christopher Sutton, Ravishankar Sundararaman
J. Comput. Chem., 2024, 45 (21), 1821–1828.
DOI: 10.1002/jcc.27353

Fast Room-Temperature Mg-Ion Conduction in Clay-Like Halide Glassy Electrolytes

Xiaochen Yang, Sunny Gupta, Yu Chen, Dogancan Sari, Han-Ming Hau, Zijian Cai, Chaochao Dun, Miao Qi, Lu Ma, Yi Liu, Jeffrey J. Urban, Gerbrand Ceder
Adv. Energy Mater., 2024.
DOI: 10.1002/aenm.202400163

Amorphous solidification mechanism of multicomponent Ti-Cu based alloy investigated by molecular dynamics simulation and drop tube experiments

ShanSen XU, Jian CHANG, Bin ZHAI, PengXu YAN, MaoJie LIN, BingBo WEI
Sci. Sin.-Tech., 2024, 54 (3), 477–489.
DOI: 10.1360/SST-2023-0408

Impact of Amorphous LiF Coating Layers on Cathode-Electrolyte Interfaces in Solid-State Batteries

Taiping Hu, Linhan Xu, Fuzhi Dai, Guobing Zhou, Fangjia Fu, Xiaoxu Wang, Linsen Li, Xinping Ai, Shenzhen Xu
Adv Funct Mater., 2024.
DOI: 10.1002/adfm.202402993

Prediction of Mechanical Properties of High-Entropy Carbide (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with the Use of Machine Learning Potential

N. S. Pikalova, I. A. Balyakin, A. A. Yuryev, A. A. Rempel
Dokl Phys Chem, 2024, 514 (1), 9–14.
DOI: 10.1134/S0012501624600049

Hyper-Elastic Deformation via Martensitic Phase Transformation in Cadmium Telluride

Kun Luo, Xiao Han, Jonathan Cappola, Dian Li, Yufeng Zheng, Lin Li, Feng Yan, Qi An
Adv Eng Mater, 2024.
DOI: 10.1002/adem.202302076

Probing the state of hydrogen in $\delta$-AlOOH at mantle conditions with machine learning potential

Chenxing Luo, Yang Sun, Renata M. Wentzcovitch
Phys, Rev, Res., 2024, 6 (1), 13292.
DOI: 10.1103/PhysRevResearch.6.013292

Ultralow-Friction at Cryogenic Temperature Induced by Hydrogen Correlated Quantum Effect

Weiqi Chen, Kang Wang, Xinran Miao, Jie Zhang, Aisheng Song, Xinchun Chen, Jianbin Luo, Tianbao Ma
Small (Weinheim Bergstr. Ger.), 2024, e2400083.
DOI: 10.1002/smll.202400083

Thermal transport of glasses via machine learning driven simulations

Paolo Pegolo, Federico Grasselli
Front., Mater,, 2024, 11.
DOI: 10.3389/fmats.2024.1369034

Determining the mechanical and decomposition properties of high energetic materials ($\alpha$-RDX, $\beta$-HMX, and $\varepsilon$-CL-20) using a neural network potential

Mingjie Wen, Xiaoya Chang, Yabei Xu, Dongping Chen, Qingzhao Chu
Phys. Chem. Chem. Phys., 2024, 26 (13), 9984–9997.
DOI: 10.1039/d4cp00017j

A Perspective on the Molecular Modeling of Electrolyte Decomposition Reactions for Solid Electrolyte Interphase Growth in Lithium-Ion Batteries

Mohammed {Bin Jassar}, Carine Michel, Sara Abada, Theodorus {De Bruin}, Sylvain Tant, Carlos Nieto-Draghi, Stephan N. Steinmann
Adv Funct Mater., 2024.
DOI: 10.1002/adfm.202313188

Tunable Ferroelectric Topological Defects on 2D Topological Surfaces: Complex Strain Engineering Skyrmion-Like Polar Structures in 2D Materials

Bo Xu, Zhanpeng Gong, Jingran Liu, Yunfei Hong, Yang Yang, Lou Li, Yilun Liu, Junkai Deng, Jefferson Zhe Liu
Adv Funct Mater., 2024, 34 (26).
DOI: 10.1002/adfm.202311599

Theoretical Prediction of Thermal Expansion Anisotropy for Y2Si2O7 Environmental Barrier Coatings Using a Deep Neural Network Potential and Comparison to Experiment

Cameron J. Bodenschatz, Wissam A. Saidi, Jamesa L. Stokes, Rebekah I. Webster, Gustavo Costa
Mater. (Basel Switz.), 2024, 17 (2), 286.
DOI: 10.3390/ma17020286

Accumulative coarse-graining of simple structural descriptors enables accurately predicting the dynamics of metallic liquids

Jiang You, Cheng Wang, Qi Wang, Min Zha, Hai-Long Jia, Jian Wang, Hui-Yuan Wang
Mater. Today Phys., 2024, 40, 101282.
DOI: 10.1016/j.mtphys.2023.101282

Deep machine learning, molecular dynamics and experimental studies of liquid Al-Cu-Co alloys

L.V. Kamaeva, E.N. Tsiok, N.M. Chtchelkatchev
J. Mol. Liq., 2024, 393, 123659.
DOI: 10.1016/j.molliq.2023.123659

Development of U-Zr-Xe ternary interatomic potentials appropriate for simulation of defect and Xe behaviors in U-Zr system

Peng Jiang, Rongyang Qiu, Jinli Cao, Xichuan Liao, Yangchun Chen, Zhixiao Liu, Xinfu He, Wen Yang, Huiqiu Deng
J. Nucl. Mater., 2024, 588, 154824.
DOI: 10.1016/j.jnucmat.2023.154824

Active learning molecular dynamics-assisted insights into ultralow thermal conductivity of two-dimensional covalent organic frameworks

Zhiqiang Li, Haoyu Dong, Jian Wang, Linhua Liu, Jia-Yue Yang
Int. J. Heat Mass Transf., 2024, 225, 125404.
DOI: 10.1016/j.ijheatmasstransfer.2024.125404

Prebiotic chemical reactivity in solution with quantum accuracy and microsecond sampling using neural network potentials

Zakarya Benayad, Rolf David, Guillaume Stirnemann
Proc. Natl. Acad. Sci. U. S. A., 2024, 121 (23), e2322040121.
DOI: 10.1073/pnas.2322040121

Neural network potential-based molecular investigation of pollutant formation of ammonia and ammonia-hydrogen combustion

Zhihao Xing, Xi Jiang
Chem. Eng. J., 2024, 489, 151492.
DOI: 10.1016/j.cej.2024.151492

Weaving the next-level structure of calcium silicate hydrate at the submicron scale via a remapping algorithm from coarse-grained to all- atom model

Ao Zhou, Juntao Kang, Renyuan Qin, Huali Hao, Tiejun Liu, Zechuan Yu
Cem. Concr. Res., 2024, 180, 107501.
DOI: 10.1016/j.cemconres.2024.107501

Ab initio dispersion potentials based on physics-based functional forms with machine learning

Corentin Villot, Ka Un Lao
J. Chem. Phys., 2024, 160 (18), 184103.
DOI: 10.1063/5.0204064

Homogeneous water vapor condensation with a deep neural network potential model

Shenghui Zhong, Zheyu Shi, Bin Zhang, Zhengcheng Wen, Longfei Chen
J. Chem. Phys., 2024, 160 (12), 124303.
DOI: 10.1063/5.0189448

Machine learning is funny but physics makes the money: How machine- learning potentials can advance computer-aided materials design in metallurgy

M. Hodapp
Comput. Mater. Sci., 2024, 233, 112715.
DOI: 10.1016/j.commatsci.2023.112715

DP/MM: A Hybrid Model for Zinc-Protein Interactions in Molecular Dynamics

Ye Ding, Jing Huang
J. Phys. Chem. Lett., 2024, 15 (2), 616–627.
DOI: 10.1021/acs.jpclett.3c03158

Calculation of solvation force in molecular dynamics simulation by deep-learning method

Jun Liao, Mincong Wu, Junyong Gao, Changjun Chen
Biophys. J., 2024, S0006-3495(24)00163-2.
DOI: 10.1016/j.bpj.2024.02.029

Ultrafast switching dynamics of the ferroelectric order in stacking- engineered ferroelectrics

Ri He, Bingwen Zhang, Hua Wang, Lei Li, Ping Tang, Gerrit Bauer, Zhicheng Zhong
Acta Materialia, 2024, 262, 119416.
DOI: 10.1016/j.actamat.2023.119416

Unraveling pyrolysis mechanisms of lignin dimer model compounds: Neural network-based molecular dynamics simulation investigations

Zhe Shang, Hui Li
Fuel, 2024, 357, 129909.
DOI: 10.1016/j.fuel.2023.129909

Mobile dislocation mediated Hall-Petch and inverse Hall-Petch behaviors in nanocrystalline Al-doped boron carbide

Jun Li, Kun Luo, Qi An
Journal of the European Ceramic Society, 2024, 44, 659–667.
DOI: 10.1016/j.jeurceramsoc.2023.09.079

2023

Data Efficient and Stability Indicated Sampling for Developing Reactive Machine Learning Potential to Achieve Ultralong Simulation in Lithium-Metal Batteries

Longkun Xu, Wei Shao, Haishun Jin, Qiang Wang
J. Phys. Chem. C, 2023, 127 (50), 24106–24117.
DOI: 10.1021/acs.jpcc.3c05522

Ultralow Lattice Thermal Transport and Considerable Wave-like Phonon Tunneling in Chalcogenide Perovskite BaZrS3

Yu Wu, Ying Chen, Zhenxing Fang, Yimin Ding, Qiaoqiao Li, Kui Xue, Hezhu Shao, Hao Zhang, Liujiang Zhou
J. Phys. Chem. Lett., 2023, 14 (50), 11465–11473.
DOI: 10.1021/acs.jpclett.3c02940

Microstructure determination of PdRu immiscible alloys based on electron-pair distribution function and local elemental segregation

Zheng Hu, Hui Li, Wenbo Zhao, Wei Zhou, Shi Hu
Cell Rep. Phys. Sci., 2023, 4 (12), 101713.
DOI: 10.1016/j.xcrp.2023.101713

Coarse-Graining with Equivariant Neural Networks: A Path Toward Accurate and Data-Efficient Models

Timothy D. Loose, Patrick G. Sahrmann, Thomas S. Qu, Gregory A. Voth
J. Phys. Chem., B, 2023, 127 (49), 10564–10572.
DOI: 10.1021/acs.jpcb.3c05928

Ferroelectric Domain and Switching Dynamics in Curved In2Se3: First- Principles and Deep Learning Molecular Dynamics Simulations

Dongyu Bai, Yihan Nie, Jing Shang, Junxian Liu, Minghao Liu, Yang Yang, Haifei Zhan, Liangzhi Kou, Yuantong Gu
Nano Lett., 2023, 23 (23), 10922–10929.
DOI: 10.1021/acs.nanolett.3c03160

Efficient Molecular Dynamics Simulations of Deep Eutectic Solvents with First-Principles Accuracy Using Machine Learning Interatomic Potentials

Omid Shayestehpour, Stefan Zahn
J. Chem. Theory Comput., 2023, 19 (23), 8732–8742.
DOI: 10.1021/acs.jctc.3c00944

Pressure-induced one-dimensional oxygen ion diffusion channel in lead apatite

Ri He, Hongyu Wu, Xuejian Qin, Xuejiao Chen, Zhicheng Zhong
Phys. Rev. B, 2023, 108 (22), 224114.
DOI: 10.1103/PhysRevB.108.224114

Machine learning of microscopic structure-dynamics relationships in complex molecular systems

Martina Crippa, Annalisa Cardellini, Matteo Cioni, G'abor Cs'anyi, Giovanni M Pavan
Mach, Learn.,: Sci, Technol,, 2023, 4 (4), 45044.
DOI: 10.1088/2632-2153/ad0fa5

Unlocking the mysterious polytypic features within vaterite CaCO3

Xingyuan San, Junwei Hu, Mingyi Chen, Haiyang Niu, Paul J. M. Smeets, Christos D. Malliakas, Jie Deng, Kunmo Koo, Roberto {Dos Reis}, Vinayak P. Dravid, Xiaobing Hu
Nat. Commun., 2023, 14 (1), 7858.
DOI: 10.1038/s41467-023-43625-0

Full-scale ab initio simulations of laser-driven atomistic dynamics

Qiyu Zeng, Bo Chen, Shen Zhang, Dongdong Kang, Han Wang, Xiaoxiang Yu, Jiayu Dai
Npj Comput. Mater, 2023, 9 (1), 213.
DOI: 10.1038/s41524-023-01168-4

Double superionicity in icy compounds at planetary interior conditions

Kyla {de Villa}, Felipe Gonz'alez-Cataldo, Burkhard Militzer
Nat. Commun., 2023, 14 (1), 7580.
DOI: 10.1038/s41467-023-42958-0

Microstructure evolution under thermo-mechanical operating of rocksalt-structure TiN via neural network potential

Fangyu Guo, Bo Chen, Qiyu Zeng, Xiaoxiang Yu, Kaiguo Chen, Dongdong Kang, Yong Du, Jianhua Wu, Jiayu Dai
J. Chem. Phys., 2023, 159 (20), 204702.
DOI: 10.1063/5.0171528

Molecular Dynamics Study of Silicon Carbide Using an Ab Initio-Based Neural Network Potential: Effect of Composition and Temperature on Crystallization Behavior

Jinyoung Lim, Youngseon Shim, Jaehong Park, Hongkee Yoon, Munbo Shim, Young-Gu Kim, Dae Sin Kim
J. Phys. Chem. C, 2023, 127 (46), 22692–22703.
DOI: 10.1021/acs.jpcc.3c04224

How the Acidity of Water Droplets and Films Is Controlled by the Air- Water Interface

Miguel {de la Puente}, Damien Laage
J. Am. Chem. Soc., 2023, 145 (46), 25186–25194.
DOI: 10.1021/jacs.3c07506

Tutorial: Deep learning prediction of thermophysical properties for liquid multicomponent alloys

R. L. Xiao, K. L. Liu, Y. Ruan, L. Hu, B. Wei
J. Appl. Phys., 2023, 134 (19).
DOI: 10.1063/5.0173250

Exploring the formation of gold/silver nanoalloys with gas-phase synthesis and machine-learning assisted simulations

Quentin Gromoff, Patrizio Benzo, Wissam A. Saidi, Christopher M. Andolina, Marie-Jos'e Casanove, Teresa Hungria, Sophie Barre, Magali Benoit, Julien Lam
Nanoscale, 2023, 16 (1), 384–393.
DOI: 10.1039/d3nr04471h

Modeling Exchange Reactions in Covalent Adaptable Networks with Machine Learning Force Fields

Yaguang Sun, Kaiwei Wan, Wenhui Shen, Jianxin He, Tong Zhou, Hui Wang, Hua Yang, Xinghua Shi
Macromolecules, 2023, 56 (21), 9003–9013.
DOI: 10.1021/acs.macromol.3c01377

Transferable Force Field for Gallium Nitride Crystal Growth from the Melt Using On-The-Fly Active Learning

Xiangyu Chen, William Shao, Nam Q. Le, Paulette Clancy
J. Chem. Theory Comput., 2023, 19 (21), 7861–7872.
DOI: 10.1021/acs.jctc.3c00587

Anomalous Thermal Transport across the Superionic Transition in Ice

Rong Rong {Qiu Qiu }, Qiyu Qi Yu {Zeng Ceng }, Han Han {Wang Wang }, Dongdong Dong Dong {Kang Kang }, Xiaoxiang Xiao Xiang {Yu Yu }, Jiayu Jia Yu {Dai Dai }
Chin. Phys, Lett,, 2023, 40 (11), 116301.
DOI: 10.1088/0256-307X/40/11/116301

Universal interatomic potential for perovskite oxides

Jing Wu, Jiyuan Yang, Yuan-Jinsheng Liu, Duo Zhang, Yudi Yang, Yuzhi Zhang, Linfeng Zhang, Shi Liu
Phys. Rev. B, 2023, 108 (18), L180104.
DOI: 10.1103/PhysRevB.108.L180104

Influence of temperature on the process of hydrogen bond symmetrization in $\varepsilon$- FeOOH

Zhen-Shuai Lei, Xiao-Wei Sun, Xin-Xuan Wang, Zi-Jiang Liu, Ting Song, Jun-Hong Tian
Phys. Rev. B, 2023, 108 (18), 184105.
DOI: 10.1103/PhysRevB.108.184105

Transition from electron-dominated to phonon-driven thermal transport in tungsten under extreme pressures

Niraj Bhatt, Pravin Karna, Sandip Thakur, Ashutosh Giri
Phys, Rev, Mater., 2023, 7 (11), 115001.
DOI: 10.1103/PhysRevMaterials.7.115001

Strain-aided room-temperature second-order ferroelectric phase transition in monolayer PbTe: Deep potential molecular dynamics simulations

Zhanpeng Gong, Jefferson Zhe Liu, Xiangdong Ding, Jun Sun, Junkai Deng
Phys. Rev. B, 2023, 108 (13), 134112.
DOI: 10.1103/PhysRevB.108.134112

The role of dynamics in heterogeneous catalysis: Surface diffusivity and N2 decomposition on Fe(111)

Luigi Bonati, Daniela Polino, Cristina Pizzolitto, Pierdomenico Biasi, Rene Eckert, Stephan Reitmeier, Robert Schl"ogl, Michele Parrinello
Proc. Natl. Acad. Sci. U. S. A., 2023, 120 (50), e2313023120.
DOI: 10.1073/pnas.2313023120

Active learning prediction and experimental confirmation of atomic structure and thermophysical properties for liquid Hf_{76}W_{24} refractory alloy

K. L. Liu, R. L. Xiao, Y. Ruan, B. Wei
Phys. Rev., E, 2023, 108 (5-2), 55310.
DOI: 10.1103/PhysRevE.108.055310

Machine learning interatomic potential for molecular dynamics simulation of the ferroelectric KNbO3 perovskite

Hao-Cheng Thong, XiaoYang Wang, Jian Han, Linfeng Zhang, Bei Li, Ke Wang, Ben Xu
Phys. Rev. B, 2023, 107, 14101.
DOI: 10.1103/PhysRevB.107.014101

Li ion diffusion behavior of Li3OCl solid-state electrolytes with different defect structures: insights from the deep potential model

Zhou Zhang, Zhongyun Ma, Yong Pei
Phys. Chem. Chem. Phys., 2023, 25, 13297–13307.
DOI: 10.1039/d2cp06073f

A deep learning-based potential developed for calcium silicate hydrates with both high accuracy and efficiency

Weihuan Li, Yang Zhou, Li Ding, Pengfei Lv, Yifan Su, Rui Wang, Changwen Miao
Journal of Sustainable Cement-Based Materials, 2023, 12, 1335–1346.
DOI: 10.1080/21650373.2023.2219251

Tuning the lattice thermal conductivity of Sb2Te3 by Cr doping: a deep potential molecular dynamics study

Pan Zhang, Wenkai Liao, Ziyang Zhu, Mi Qin, Zhenhua Zhang, Dan Jin, Yong Liu, Ziyu Wang, Zhihong Lu, Rui Xiong
Phys. Chem. Chem. Phys., 2023, 25, 15422–15432.
DOI: 10.1039/d3cp00999h

A deep learning interatomic potential suitable for simulating radiation damage in bulk tungsten

Chang-Jie Ding, Ya-Wei Lei, Xiao-Yang Wang, Xiao-Lin Li, Xiang-Yan Li, Yan-Ge Zhang, Yi-Chun Xu, Chang-Song Liu, Xue-Bang Wu
Tungsten, 2023.
DOI: 10.1007/s42864-023-00230-4

Deep-learning potentials for proton transport in double-sided graphanol

Siddarth K. Achar, Leonardo Bernasconi, Juan J. Alvarez, J. Karl Johnson
Journal of Materials Research, 2023.
DOI: 10.1557/s43578-023-01141-3

A deep potential molecular dynamics study on the ionic structure and transport properties of NaCl-CaCl2 molten salt

Gegentana, Liu Cui, Leping Zhou, Xiaoze Du
Ionics, 2023, 1–11.

A first-principles machine-learning force field for heterogeneous ice nucleation on microcline feldspar

Pablo M Piaggi, Annabella Selloni, Athanassios Z Panagiotopoulos, Roberto Car, Pablo G Debenedetti
Faraday Discuss., 2023.
DOI: 10.1039/d3fd00100h

Accelerating materials discovery using integrated deep machine learning approaches

Weiyi Xia, Ling Tang, Huaijun Sun, Chao Zhang, Kai-Ming Ho, Gayatri Viswanathan, Kirill Kovnir, Cai-Zhuang Wang
J. Mater. Chem. A, 2023.
DOI: 10.1039/d3ta03771a

Speciation of La3+-Cl- Complexes in Hydrothermal Fluids from Deep Potential Molecular Dynamics

Wei Zhang, Li Zhou, Tinggui Yan, Mohan Chen
J. Phys. Chem. B, 2023, 127, 8926–8937.
DOI: 10.1021/acs.jpcb.3c05428

Neural Network Water Model Based on the MB-Pol Many-Body Potential

Maria Carolina Muniz, Roberto Car, Athanassios Z Panagiotopoulos
J. Phys. Chem. B, 2023, 127, 9165–9171.
DOI: 10.1021/acs.jpcb.3c04629

Understanding the Anomalous Diffusion of Water in Aqueous Electrolytes Using Machine Learned Potentials

Nikhil V S Avula, Michael L Klein, Sundaram Balasubramanian
J. Phys. Chem. Lett., 2023, 14, 9500–9507.
DOI: 10.1021/acs.jpclett.3c02112

Insights into the local structure evolution and thermophysical properties of NaCl-KCl-MgCl2\texte ndashLaCl3 melt driven by machine learning

Jia Zhao, Taixi Feng, Guimin Lu, Jianguo Yu
J. Mater. Chem. A, 2023, 11, 23999–24012.
DOI: 10.1039/d3ta03434h

Constrained Hybrid Monte Carlo Sampling Made Simple for Chemical Reaction Simulations

Bin Jin, Taiping Hu, Kuang Yu, Shenzhen Xu
J. Chem. Theory Comput., 2023, 19, 7343–7357.
DOI: 10.1021/acs.jctc.3c00571

Water dissociation at the water-rutile TiO 2 (110) interface from ab~initio-based deep neural network simulations

Bo Wen, Marcos F Calegari Andrade, Li-Min Liu, Annabella Selloni
Proc. Natl. Acad. Sci. U. S. A., 2023, 120, e2212250120.
DOI: 10.1073/pnas.2212250120

Development and Validation of Versatile Deep Atomistic Potentials for Metal Oxides

Pandu Wisesa, Christopher M Andolina, Wissam A Saidi
J. Phys. Chem. Lett., 2023, 14, 468–475.
DOI: 10.1021/acs.jpclett.2c03445

Machine learning assisted investigation of the barocaloric performance in ammonium iodide

Xiong Xu, Fangbiao Li, Chang Niu, Min Li, Hui Wang
2023, 122.
DOI: 10.1063/5.0131696

Accessing the thermal conductivities of Sb2Te3 and Bi2Te3/Sb2Te3 superlattices by molecular dynamics simulations with a deep neural network potential

Pan Zhang, Mi Qin, Zhenhua Zhang, Dan Jin, Yong Liu, Ziyu Wang, Zhihong Lu, Jing Shi, Rui Xiong
Phys. Chem. Chem. Phys., 2023, 25, 6164–6174.
DOI: 10.1039/d2cp05590b

Predicting Structural Properties of Pure Silica Zeolites Using Deep Neural Network Potentials

Tyler G Sours, Ambarish R Kulkarni
J. Phys. Chem. C. Nanomater. Interfaces, 2023, 127, 1455–1463.
DOI: 10.1021/acs.jpcc.2c08429

Melting of MgSiO3 determined by machine learning potentials

Jie Deng, Haiyang Niu, Junwei Hu, Mingyi Chen, Lars Stixrude
Phys. Rev. B, 2023, 107, 64103.
DOI: 10.1103/PhysRevB.107.064103

Machine learning based implicit solvent model for aqueous-solution alanine dipeptide molecular dynamics simulations

Songyuan Yao, Richard Van, Xiaoliang Pan, Ji Hwan Park, Yuezhi Mao, Jingzhi Pu, Ye Mei, Yihan Shao
RSC Adv., 2023, 13, 4565–4577.
DOI: 10.1039/d2ra08180f

Large-scale atomistic simulation of dislocation core structure in face-centered cubic metal with Deep Potential method

Fenglin Deng, Hongyu Wu, Ri He, Peijun Yang, Zhicheng Zhong
Computational Materials Science, 2023, 218, 111941.
DOI: 10.1016/j.commatsci.2022.111941

Melting conditions and entropies of superionic water ice: Free-energy calculations based on hybrid solid/liquid reference systems

Vitor Fidalgo C\^andido, Filipe Matusalem, Maurice de Koning
J. Chem. Phys., 2023, 158, 64502.
DOI: 10.1063/5.0138987

Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Water

M'arcio S Gomes-Filho, Alberto Torres, Alexandre Reily Rocha, Luana S Pedroza
J. Phys. Chem. B, 2023, 127, 1422–1428.
DOI: 10.1021/acs.jpcb.2c09059

Thermal transport across copper-water interfaces according to deep potential molecular dynamics

Zhiqiang Li, Xiaoyu Tan, Zhiwei Fu, Linhua Liu, Jia-Yue Yang
Phys. Chem. Chem. Phys., 2023, 25, 6746–6756.
DOI: 10.1039/d2cp05530a

Quasiclassical Trajectory Simulation as a Protocol to Build Locally Accurate Machine Learning Potentials

Jintu Zhang, Haotian Zhang, Zhixin Qin, Yu Kang, Xin Hong, Tingjun Hou
J. Chem. Inf. Model., 2023, 63, 1133–1142.
DOI: 10.1021/acs.jcim.2c01497

QD$\pi$: A Quantum Deep Potential Interaction Model for Drug Discovery

Jinzhe Zeng, Yujun Tao, Timothy J Giese, Darrin M York
J. Chem. Theory Comput., 2023, 19, 1261–1275.
DOI: 10.1021/acs.jctc.2c01172

A deep learning approach to predict thermophysical properties of metastable liquid Ti-Ni-Cr-Al alloy

R. L. Xiao, Q. Wang, J. Y. Qin, J. F. Zhao, Y. Ruan, H. P. Wang, H. Li, B. Wei
2023, 133.
DOI: 10.1063/5.0138001

A \textquotedblleftshort blanket\textquotedblright dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions?

Yaoguang Zhai, Alessandro Caruso, Sigbj\orn L\oland Bore, Zhishang Luo, Francesco Paesani
J. Chem. Phys., 2023, 158, 84111.
DOI: 10.1063/5.0142843

Structure and solidification of the (Fe0.75B0.15Si0.1)100-xTax (x=0-2) melts: Experiment and machine learning

I.V. Sterkhova, L.V. Kamaeva, V.I. Lad'yanov, N.M. Chtchelkatchev
Journal of Physics and Chemistry of Solids, 2023, 174, 111143.
DOI: 10.1016/j.jpcs.2022.111143

Unravelling the dissolution dynamics of silicate minerals by deep learning molecular dynamics simulation: A case of dicalcium silicate

Yunjian Li, Hui Pan, Zongjin Li
Cement and Concrete Research, 2023, 165, 107092.
DOI: 10.1016/j.cemconres.2023.107092

Profiling the off-center atomic displacements in CuCl at finite temperatures with a deep-learning potential

Zhi-Hao Wang, Xuan-Yan Chen, Zhen Zhang, Xie Zhang, Su- Huai Wei
Phys. Rev. Materials, 2023, 7, 34601.
DOI: 10.1103/PhysRevMaterials.7.034601

Liquid-Crystal Structure Inheritance in Machine Learning Potentials for Network-Forming Systems

I. A. Balyakin, R. E. Ryltsev, N. M. Chtchelkatchev
Jetp Lett., 2023, 117, 370–376.
DOI: 10.1134/S0021364023600234

Oxygen Vacancy Diffusion in Rutile TiO2: Insight from Deep Neural Network Potential Simulations

Zhihong Wu, Wen-Jin Yin, Bo Wen, Dongwei Ma, Li-Min Liu
J. Phys. Chem. Lett., 2023, 14, 2208–2214.
DOI: 10.1021/acs.jpclett.2c03827

Nanotwinning-induced pseudoplastic deformation in boron carbide under low temperature

Jun Li, Qi An
International Journal of Mechanical Sciences, 2023, 242, 107998.
DOI: 10.1016/j.ijmecsci.2022.107998

Quantum Informed Machine-Learning Potentials for Molecular Dynamics Simulations of CO2\textquoterights Chemisorption and Diffusion in Mg-MOF-74

Bowen Zheng, Felipe Lopes Oliveira, Rodrigo Neumann Barros Ferreira, Mathias Steiner, Hendrik Hamann, Grace X Gu, Binquan Luan
ACS Nano, 2023, 17, 5579–5587.
DOI: 10.1021/acsnano.2c11102

Modern semiempirical electronic structure methods and machine learning potentials for drug discovery: Conformers, tautomers, and protonation states

Jinzhe Zeng, Yujun Tao, Timothy J Giese, Darrin M York
J. Chem. Phys., 2023, 158, 124110.
DOI: 10.1063/5.0139281

Innate dynamics and identity crisis of a metal surface unveiled by machine learning of atomic environments

Matteo Cioni, Daniela Polino, Daniele Rapetti, Luca Pesce, Massimo Delle Piane, Giovanni M Pavan
J. Chem. Phys., 2023, 158, 124701.
DOI: 10.1063/5.0139010

Prediction on local structure and properties of LiCl-KCl-AlCl3 ternary molten salt with deep learning potential

Min Bu, Taixi Feng, Guimin Lu
Journal of Molecular Liquids, 2023, 375, 120689.
DOI: 10.1016/j.molliq.2022.120689

Atomic structure, stability, and dissociation of dislocations in cadmium telluride

Jun Li, Kun Luo, Qi An
International Journal of Plasticity, 2023, 163, 103552.
DOI: 10.1016/j.ijplas.2023.103552

The highest melting point material: Searched by Bayesian global optimization with deep potential molecular dynamics

Yinan Wang, Bo Wen, Xingjian Jiao, Ya Li, Lei Chen, Yujin Wang, Fu-Zhi Dai
2023, 12, 803–814.
DOI: 10.26599/JAC.2023.9220721

High-Accuracy Neural Network Interatomic Potential for Silicon Nitride

Hui Xu, Zeyuan Li, Zhaofu Zhang, Sheng Liu, Shengnan Shen, Yuzheng Guo
Nanomaterials (Basel)., 2023, 13, 1352.
DOI: 10.3390/nano13081352

A New Spinel Chloride Solid Electrolyte with High Ionic Conductivity and Stability for Na-Ion Batteries

Jiahui Liu, Shuo Wang, Yoshiyuki Kawazoe, Qiang Sun
ACS Materials Lett., 2023, 5, 1009–1017.
DOI: 10.1021/acsmaterialslett.3c00119

Scalable hybrid deep neural networks/polarizable potentials biomolecular simulations including long-range effects

Th'eo Jaffrelot Inizan, Thomas Pl'e, Olivier Adjoua, Pengyu Ren, Hatice G"okcan, Olexandr Isayev, Louis Lagard\`ere, Jean-Philip Piquemal
Chem. Sci., 2023, 14, 5438–5452.
DOI: 10.1039/d2sc04815a

Structural and Composition Evolution of Palladium Catalyst for CO Oxidation under Steady-State Reaction Conditions

Jiawei Wu, Dingming Chen, Jianfu Chen, Haifeng Wang
J. Phys. Chem. C, 2023, 127, 6262–6270.
DOI: 10.1021/acs.jpcc.2c07877

Monitoring the melting behavior of boron nanoparticles using a neural network potential

Xiaoya Chang, Qingzhao Chu, Dongping Chen
Phys. Chem. Chem. Phys., 2023, 25, 12841–12853.
DOI: 10.1039/d3cp00571b

Microstructure and Thermophysical Property Prediction for Chloride Composite Phase Change Materials: A Deep Potential Molecular Dynamics Study

C. Y. Zhao, Y. B. Tao, Y. He
J. Phys. Chem. C, 2023, 127, 6852–6860.
DOI: 10.1021/acs.jpcc.2c08589

Cooperative diffusion in body-centered cubic iron in Earth and super- Earths\textquoteright inner core conditions

Maitrayee Ghosh, Shuai Zhang, Lianming Hu, S X Hu
J. Phys. Condens. Matter, 2023, 35, 154002.
DOI: 10.1088/1361-648X/acba71

Pressure-Induced Stability of Methane Hydrate from Machine Learning Force Field Simulations

Kun Luo, Yidi Shen, Jun Li, Qi An
J. Phys. Chem. C, 2023, 127, 7071–7077.
DOI: 10.1021/acs.jpcc.2c09121

Unraveling the Dynamic Correlations between Transition Metal Migration and the Oxygen Dimer Formation in the Highly Delithiated LixCoO2 Cathode

Taiping Hu, Fu-Zhi Dai, Guobing Zhou, Xiaoxu Wang, Shenzhen Xu
J. Phys. Chem. Lett., 2023, 14, 3677–3684.
DOI: 10.1021/acs.jpclett.3c00506

Predicting thermodynamic stability of magnesium alloys in machine learning

Xi He, Jinde Liu, Chen Yang, Gang Jiang
Computational Materials Science, 2023, 223, 112111.
DOI: 10.1016/j.commatsci.2023.112111

Hydrogen distribution between the Earth's inner and outer core

Liang Yuan, Gerd Steinle-Neumann
Earth and Planetary Science Letters, 2023, 609, 118084.
DOI: 10.1016/j.epsl.2023.118084

Lattice Thermal Conductivity of Monolayer InSe Calculated by Machine Learning Potential

Jinsen Han, Qiyu Zeng, Ke Chen, Xiaoxiang Yu, Jiayu Dai
Nanomaterials (Basel)., 2023, 13, 1576.
DOI: 10.3390/nano13091576

Modeling the high-pressure solid and liquid phases of tin from deep potentials with ab initio accuracy

Tao Chen, Fengbo Yuan, Jianchuan Liu, Huayun Geng, Linfeng Zhang, Han Wang, Mohan Chen
Phys. Rev. Materials, 2023, 7, 53603.
DOI: 10.1103/PhysRevMaterials.7.053603

Estimation of frequency factors for the calculation of kinetic isotope effects from classical and path integral free energy simulations

Timothy J Giese, Darrin M York
J. Chem. Phys., 2023, 158.
DOI: 10.1063/5.0147218

A Deep Potential model for liquid-vapor equilibrium and cavitation rates of water

Ignacio Sanchez-Burgos, Maria Carolina Muniz, Jorge R Espinosa, Athanassios Z Panagiotopoulos
J. Chem. Phys., 2023, 158.
DOI: 10.1063/5.0144500

First-Principles-Based Machine Learning Models for Phase Behavior and Transport Properties of CO2

Reha Mathur, Maria Carolina Muniz, Shuwen Yue, Roberto Car, Athanassios Z Panagiotopoulos
J. Phys. Chem. B, 2023, 127, 4562–4569.
DOI: 10.1021/acs.jpcb.3c00610

Characterizing Structure-Dependent TiS2/Water Interfaces Using Deep-Neural-Network-Assisted Molecular Dynamics

Lesheng Li, Marcos F. Calegari Andrade, Roberto Car, Annabella Selloni, Emily A. Carter
J. Phys. Chem. C, 2023, 127, 9750–9758.
DOI: 10.1021/acs.jpcc.2c08581

An accurate interatomic potential for the TiAlNb ternary alloy developed by deep neural network learning method

Jiajun Lu, Jinkai Wang, Kaiwei Wan, Ying Chen, Hao Wang, Xinghua Shi
J. Chem. Phys., 2023, 158.
DOI: 10.1063/5.0147720

In Silico Demonstration of Fast Anhydrous Proton Conduction on Graphanol

Siddarth K Achar, Leonardo Bernasconi, Ruby I DeMaio, Katlyn R Howard, J Karl Johnson
ACS Appl. Mater. Interfaces, 2023, 15, 25873–25883.
DOI: 10.1021/acsami.3c04022

Machine learning insight into h-BN growth on Pt(111) from atomic states

Kangmo Yeo, Sukmin Jeong
Applied Surface Science, 2023, 621, 156893.
DOI: 10.1016/j.apsusc.2023.156893

Molecular dynamics simulations of CaCl2-NaCl molten salt based on the machine learning potentials

Yun Xie, Min Bu, Guiming Zou, Ye Zhang, Guimin Lu
Solar Energy Materials and Solar Cells, 2023, 254, 112275.
DOI: 10.1016/j.solmat.2023.112275

A Heterogeneous Parallel Non-von Neumann Architecture System for Accurate and Efficient Machine Learning Molecular Dynamics

Zhuoying Zhao, Ziling Tan, Pinghui Mo, Xiaonan Wang, Dan Zhao, Xin Zhang, Ming Tao, Jie Liu
IEEE Trans. Circuits Syst. I, 2023, 70, 2439–2449.
DOI: 10.1109/TCSI.2023.3255199

Noble gas (He, Ne, and Ar) solubilities in high-pressure silicate melts calculated based on deep-potential modeling

Kai Wang, Xiancai Lu, Xiandong Liu, Kun Yin
Geochimica et Cosmochimica Acta, 2023, 350, 57–68.
DOI: 10.1016/j.gca.2023.03.032

Reversible densification and cooperative atomic movement induced \textquotedblleftcompaction\textquotedblright in vitreous silica: a new sight from deep neural network interatomic potentials

Yongnian Qi, Xiaoguang Guo, Hao Wang, Shuohua Zhang, Ming Li, Ping Zhou, Dongming Guo
J Mater Sci, 2023, 58, 9515–9532.
DOI: 10.1007/s10853-023-08599-w

Molecular dynamics simulation of Fe-Si alloys using a neural network machine learning potential

Huaijun Sun, Chao Zhang, Ling Tang, Renhai Wang, Weiyi Xia, Cai-Zhuang Wang
Phys. Rev. B, 2023, 107, 224301.
DOI: 10.1103/PhysRevB.107.224301

Evaluation of Machine Learning Interatomic Potentials for Gold Nanoparticles\textemdashTransferability towards Bulk

Marco Fronzi, Roger D Amos, Rika Kobayashi
Nanomaterials (Basel)., 2023, 13, 1832.
DOI: 10.3390/nano13121832

A genome dependence of metastable phase selection on atomic structure for undercooled liquid Nb90Si10 hypoeutectic alloy

Q. Wang, C. H. Zheng, M. X. Li, L. Hu, H. P. Wang, B. Wei
2023, 122.
DOI: 10.1063/5.0152293

TimeSOAP: Tracking high-dimensional fluctuations in complex molecular systems via time variations of SOAP spectra

Cristina Caruso, Annalisa Cardellini, Martina Crippa, Daniele Rapetti, Giovanni M Pavan
J. Chem. Phys., 2023, 158.
DOI: 10.1063/5.0147025

Deciphering the Anomalous Acidic Tendency of Terminal Water at Rutile(110)-Water Interfaces

Yong-Bin Zhuang, Jun Cheng
J. Phys. Chem. C, 2023, 127, 10532–10540.
DOI: 10.1021/acs.jpcc.3c01870

Temperature-dependent microwave dielectric permittivity of gallium oxide: A deep potential molecular dynamics study

Zhiqiang Li, Xinlei Duan, Linhua Liu, Jia-Yue Yang
2023, 133.
DOI: 10.1063/5.0149447

Investigating the Hydroxyl Reorientation in Hydroxyapatite Using Machine Learning Potentials

Jing Wang, Xin Wang, Hua Zhu, Dingguo Xu
J. Phys. Chem. C, 2023, 127, 11369–11377.
DOI: 10.1021/acs.jpcc.3c02426

Probing Confinement Effects on the Infrared Spectra of Water with Deep Potential Molecular Dynamics Simulations

Marcos F Calegari Andrade, Tuan Anh Pham
J. Phys. Chem. Lett., 2023, 14, 5560–5566.
DOI: 10.1021/acs.jpclett.3c01054

A Deep Neural Network Potential to Study the Thermal Conductivity of MnBi2Te4 and Bi2Te3/MnBi2Te4 Superlattice

Ruijin Qu, Yawei Lv, Zhihong Lu
J. Electron. Mater., 2023, 52, 4475–4483.
DOI: 10.1007/s11664-023-10403-z

Molecular insight into the GaP(110)-water interface using machine learning accelerated molecular dynamics

Xue-Ting Fan, Xiao-Jian Wen, Yong-Bin Zhuang, Jun Cheng
Journal of Energy Chemistry, 2023, 82, 239–247.
DOI: 10.1016/j.jechem.2023.03.013

Modelling of dislocations, twins and crack-tips in HCP and BCC Ti

Tongqi Wen, Anwen Liu, Rui Wang, Linfeng Zhang, Jian Han, Han Wang, David J. Srolovitz, Zhaoxuan Wu
International Journal of Plasticity, 2023, 166, 103644.
DOI: 10.1016/j.ijplas.2023.103644

Halide Vacancies Create No Charge Traps on Lead Halide Perovskite Surfaces but Can Generate Deep Traps in the Bulk

Jingyi Ran, Bipeng Wang, Yifan Wu, Dongyu Liu, Carlos Mora Perez, Andrey S Vasenko, Oleg V Prezhdo
J. Phys. Chem. Lett., 2023, 14, 6028–6036.
DOI: 10.1021/acs.jpclett.3c01231

High-Throughput Condensed-Phase Hybrid Density Functional Theory for Large-Scale Finite-Gap Systems: The SeA Approach

Hsin-Yu Ko, Marcos F Calegari Andrade, Zachary M Sparrow, Ju-An Zhang, Robert A DiStasio Jr
J. Chem. Theory Comput., 2023, 19, 4182–4201.
DOI: 10.1021/acs.jctc.2c00827

Microscopic Mechanism of Proton Transfer in Pure Water under Ambient Conditions

Jun Huo, Jianghao Chen, Pei Liu, Benkun Hong, Jian Zhang, Hao Dong, Shuhua Li
J. Chem. Theory Comput., 2023, 19, 4243–4254.
DOI: 10.1021/acs.jctc.3c00244

Revealing Carbon Vacancy Distribution on $\alpha$-MoC1-x Surfaces by Machine-Learning Force-Field-Aided Cluster Expansion Approach

Jun-Zhong Xie, Hong Jiang
J. Phys. Chem. C, 2023, 127, 13228–13237.
DOI: 10.1021/acs.jpcc.3c01941

Modeling the aqueous interface of amorphous TiO2 using deep potential molecular dynamics

Zhutian Ding, Annabella Selloni
J. Chem. Phys., 2023, 159.
DOI: 10.1063/5.0157188

Transferability evaluation of the deep potential model for simulating water-graphene confined system

Dongfei Liu, Jianzhong Wu, Diannan Lu
J. Chem. Phys., 2023, 159.
DOI: 10.1063/5.0153196

Structural transformations in single-crystalline AgPd nanoalloys from multiscale deep potential molecular dynamics

Longfei Guo, Tao Jin, Shuang Shan, Quan Tang, Zhen Li, Chongyang Wang, Junpeng Wang, Bowei Pan, Qiao Wang, Fuyi Chen
J. Chem. Phys., 2023, 159.
DOI: 10.1063/5.0158918

Detecting dynamic domains and local fluctuations in complex molecular systems via timelapse neighbors shuffling

Martina Crippa, Annalisa Cardellini, Cristina Caruso, Giovanni M Pavan
Proc. Natl. Acad. Sci. U. S. A., 2023, 120, e2300565120.
DOI: 10.1073/pnas.2300565120

Anisotropic Collective Variables with Machine Learning Potential for Ab Initio Crystallization of Complex Ceramics

Yuanpeng Deng, Shubin Fu, Jingran Guo, Xiang Xu, Hui Li
ACS Nano, 2023, 17, 14099–14113.
DOI: 10.1021/acsnano.3c04602

Fluorine spillover for ceria- vs silica-supported palladium nanoparticles: A MD study using machine learning potentials

Da-Jiang Liu, James W Evans
J. Chem. Phys., 2023, 159.
DOI: 10.1063/5.0147132

Rapid acquisition of liquid thermophysical properties from pure metals to quaternary alloys by proposing a machine learning strategy

R. L. Xiao, K. L. Liu, Y. Ruan, B. Wei
2023, 123.
DOI: 10.1063/5.0160046

Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag8SnSe6

Qingyong Ren, Mayanak K Gupta, Min Jin, Jingxuan Ding, Jiangtao Wu, Zhiwei Chen, Siqi Lin, Oscar Fabelo, Jose Alberto Rodr'\iguez-Velamaz'an, Maiko Kofu, Kenji Nakajima, Marcell Wolf, Fengfeng Zhu, Jianli Wang, Zhenxiang Cheng, Guohua Wang, Xin Tong, Yanzhong Pei, Olivier Delaire, Jie Ma
Nat. Mater., 2023, 22, 999–1006.
DOI: 10.1038/s41563-023-01560-x

Highly transferable atomistic machine-learning potentials from curated and compact datasets across the periodic table

Christopher M. Andolina, Wissam A. Saidi
Digital Discovery, 2023, 2, 1070–1077.
DOI: 10.1039/d3dd00046j

Unraveling the Oxidation Behaviors of MXenes in Aqueous Systems by Active-Learning-Potential Molecular-Dynamics Simulation

Pengfei Hou, Yumiao Tian, Yu Xie, Fei Du, Gang Chen, Aleksandra Vojvodic, Jianzhong Wu, Xing Meng
Angew. Chem. Int. Ed. Engl., 2023, 62, e202304205.
DOI: 10.1002/anie.202304205

DeePMD-kit v2: A software package for deep potential models

Jinzhe Zeng, Duo Zhang, Denghui Lu, Pinghui Mo, Zeyu Li, Yixiao Chen, Mari'an Rynik, Li'ang Huang, Ziyao Li, Shaochen Shi, Yingze Wang, Haotian Ye, Ping Tuo, Jiabin Yang, Ye Ding, Yifan Li, Davide Tisi, Qiyu Zeng, Han Bao, Yu Xia, Jiameng Huang, Koki Muraoka, Yibo Wang, Junhan Chang, Fengbo Yuan, Sigbj\orn L\oland Bore, Chun Cai, Yinnian Lin, Bo Wang, Jiayan Xu, Jia-Xin Zhu, Chenxing Luo, Yuzhi Zhang, Rhys E A Goodall, Wenshuo Liang, Anurag Kumar Singh, Sikai Yao, Jingchao Zhang, Renata Wentzcovitch, Jiequn Han, Jie Liu, Weile Jia, Darrin M York, Weinan E, Roberto Car, Linfeng Zhang, Han Wang
J. Chem. Phys., 2023, 159.
DOI: 10.1063/5.0155600

Melting curves of ice polymorphs in the vicinity of the liquid-liquid critical point

Pablo M Piaggi, Thomas E Gartner, Roberto Car, Pablo G Debenedetti
J. Chem. Phys., 2023, 159.
DOI: 10.1063/5.0159288

Spontaneous Hybrid Nano-Domain Behavior of the Organic-Inorganic Hybrid Perovskites

Ping Tuo, Lei Li, Xiaoxu Wang, Jianhui Chen, Zhicheng Zhong, Bo Xu, Fu-Zhi Dai
Adv Funct Materials, 2023, 33.
DOI: 10.1002/adfm.202301663

Thermal Conductivity of Water at Extreme Conditions

Cunzhi Zhang, Marcello Puligheddu, Linfeng Zhang, Roberto Car, Giulia Galli
J. Phys. Chem. B, 2023, 127, 7011–7.
DOI: 10.1021/acs.jpcb.3c02972

Local structure, thermodynamics, and melting of boron phosphide at high pressures by deep learning-driven ab~initio simulations

N M Chtchelkatchev, R E Ryltsev, M V Magnitskaya, S M Gorbunov, K A Cherednichenko, V L Solozhenko, V V Brazhkin
J. Chem. Phys., 2023, 159.
DOI: 10.1063/5.0165948

Exploring Configurations of Nanocrystal Ligands Using Machine-Learned Force Fields

Jakub K Sowa, Sean T Roberts, Peter J Rossky
J. Phys. Chem. Lett., 2023, 14, 7215–7222.
DOI: 10.1021/acs.jpclett.3c01618

Deep Potential Molecular Dynamics Study of Chapman-Jouguet Detonation Events of Energetic Materials

Jidong Zhang, Wei Guo, Yugui Yao
J. Phys. Chem. Lett., 2023, 14, 7141–7148.
DOI: 10.1021/acs.jpclett.3c01392

Why Dissolving Salt in Water Decreases Its Dielectric Permittivity

Chunyi Zhang, Shuwen Yue, Athanassios Z Panagiotopoulos, Michael L Klein, Xifan Wu
Phys. Rev. Lett., 2023, 131, 76801.
DOI: 10.1103/PhysRevLett.131.076801

Characterization of the Hydrogen-Bond Network in High-Pressure Water by Deep Potential Molecular Dynamics

Renxi Liu, Mohan Chen
J. Chem. Theory Comput., 2023, 19, 5602–5608.
DOI: 10.1021/acs.jctc.3c00445

Equation of state predictions for ScF3 and CaZrF6 with neural network- driven molecular dynamics

John P Stoppelman, Angus P Wilkinson, Jesse G McDaniel
J. Chem. Phys., 2023, 159.
DOI: 10.1063/5.0157615

Reactant-induced dynamics of lithium imide surfaces during the ammonia decomposition process

Manyi Yang, Umberto Raucci, Michele Parrinello
Nat Catal, 2023, 6, 829–836.
DOI: 10.1038/s41929-023-01006-2

Deep neural network potential for simulating hydrogen blistering in tungsten

Xiao-Yang Wang, Yi-Nan Wang, Ke Xu, Fu-Zhi Dai, Hai-Feng Liu, Guang-Hong Lu, Han Wang
Phys. Rev. Materials, 2023, 7, 93601.
DOI: 10.1103/PhysRevMaterials.7.093601

ChecMatE: A workflow package to automatically generate machine learning potentials and phase diagrams for semiconductor alloys

Yu-Xin Guo, Yong-Bin Zhuang, Jueli Shi, Jun Cheng
J. Chem. Phys., 2023, 159.
DOI: 10.1063/5.0166858

Unraveling the Atomic-scale Mechanism of Phase Transformations and Structural Evolutions during (de)Lithiation in Si Anodes

Fangjia Fu, Xiaoxu Wang, Linfeng Zhang, Yifang Yang, Jianhui Chen, Bo Xu, Chuying Ouyang, Shenzhen Xu, Fu-Zhi Dai, Weinan E
Adv Funct Materials, 2023, 33.
DOI: 10.1002/adfm.202303936

High-Accuracy Machine-Learned Interatomic Potentials for the Phase Change Material Ge3Sb6Te5

Wei Yu, Zhaofu Zhang, Xuhao Wan, Jinhao Su, Qingzhong Gui, Hailing Guo, Hong-xia Zhong, John Robertson, Yuzheng Guo
Chem. Mater., 2023, 35, 6651–6658.
DOI: 10.1021/acs.chemmater.3c00524

Distinct anharmonic characteristics of phonon-driven lattice thermal conductivity and thermal expansion in bulk MoSe2 and WSe2

Mayanak K. Gupta, Sajan Kumar, Ranjan Mittal, Sanjay K. Mishra, Stephane Rols, Olivier Delaire, Arumugum Thamizhavel, P. U. Sastry, Samrath L. Chaplot
J. Mater. Chem. A, 2023, 11, 21864–21873.
DOI: 10.1039/d3ta03830k

Deciphering the Atomistic Mechanism of Si(111)-7 \texttimes 7 Surface Reconstruction Using a Machine-Learning Force Field

Yidi Shen, Sergey I Morozov, Kun Luo, Qi An, William A Goddard Iii
J. Am. Chem. Soc., 2023, 145, 20511–20520.
DOI: 10.1021/jacs.3c06540

Large scale and quantum accurate molecular dynamics simulation: Liquid iron under extreme condition

Qi-Yu Zeng, Bo Chen, Dong-Dong Kang, Jia-Yu Dai
Acta Phys. Sin., 2023, 72, 187102.
DOI: 10.7498/aps.72.20231258

Role of hydrogen-doping for compensating oxygen-defect in non- stoichiometric amorphous In2O3$-$x: Modeling with a machine-learning potential

Shingo Urata, Nobuhiro Nakamura, Junghwan Kim, Hideo Hosono
2023, 134.
DOI: 10.1063/5.0149199

Advancing Accurate and Efficient Surface Behavior Modeling of Al Clusters with Machine Learning Potential

Chongteng Wu, Tong Liu, Xiayu Ran, Yuefeng Su, Yun Lu, Ning Li, Lai Chen, Zhenwei Wu, Feng Wu, Duanyun Cao
J. Phys. Chem. C, 2023, 127, 19115–19126.
DOI: 10.1021/acs.jpcc.3c03229

Atomistic modeling of lithium materials from deep learning potential with ab initio accuracy

Haidi Wang, Tao Li, Yufan Yao, Xiaofeng Liu, Weiduo Zhu, Zhao Chen, Zhongjun Li, Wei Hu
2023, 36, 573–581.
DOI: 10.1063/1674-0068/cjcp2211173

Collective motion in hcp-Fe at Earth\textquoterights inner core conditions

Youjun Zhang, Yong Wang, Yuqian Huang, Junjie Wang, Zhixin Liang, Long Hao, Zhipeng Gao, Jun Li, Qiang Wu, Hong Zhang, Yun Liu, Jian Sun, Jung-Fu Lin
Proc. Natl. Acad. Sci. U. S. A., 2023, 120, e2309952120.
DOI: 10.1073/pnas.2309952120

Machine-Learning Accelerated First-Principles Accurate Modeling of the Solid-Liquid Phase Transition in MgO under Mantle Conditions

Pandu Wisesa, Christopher M Andolina, Wissam A Saidi
J. Phys. Chem. Lett., 2023, 14, 8741–8748.
DOI: 10.1021/acs.jpclett.3c02424

Thermal transport across TiO2-H2O interface involving water dissociation: Ab initio-assisted deep potential molecular dynamics

Zhiqiang Li, Jian Wang, Chao Yang, Linhua Liu, Jia-Yue Yang
J. Chem. Phys., 2023, 159.
DOI: 10.1063/5.0167238

Deep-learning-assisted theoretical insights into the compatibility of environment friendly insulation medium with metal surface of power equipment

Xuhao Wan, Zhaofu Zhang, Anyang Wang, Jinhao Su, Wenjun Zhou, John Robertson, Yuan Peng, Yu Zheng, Yuzheng Guo
J. Colloid Interface Sci., 2023, 648, 317–326.
DOI: 10.1016/j.jcis.2023.05.188

Computational study of Na diffusion and conduction in P2- and O3-Na2x[NixTi1-x]O2 materials with machine-learning interatomic potentials

Yining He, Qian Chen, Wei Lai
Solid State Ionics, 2023, 399, 116298.
DOI: 10.1016/j.ssi.2023.116298

Self-powered H2 generation implemented by hydrazine oxidation assisting hybrid electrochemical cell

Xi Liu, Wei Sun, Xiang Hu, Junxiang Chen, Zhenhai Wen
Chemical Engineering Journal, 2023, 474, 145355.
DOI: 10.1016/j.cej.2023.145355

Understanding the sluggish and highly variable transport kinetics of lithium ions in LiFePO4

Youcheng Hu, Xiaoxiao Wang, Peng Li, Junxiang Chen, Shengli Chen
Sci. China Chem., 2023, 66, 3297–3306.
DOI: 10.1007/s11426-023-1662-9

Thermal conductivity of Fe-bearing bridgmanite and post-perovskite: Implications for the heat flux from the core

Dong Wang, Zhongqing Wu, Xin Deng
Earth and Planetary Science Letters, 2023, 621, 118368.
DOI: 10.1016/j.epsl.2023.118368

Inorganic glass electrolytes with polymer-like viscoelasticity

Tao Dai, Siyuan Wu, Yaxiang Lu, Yang Yang, Yuan Liu, Chao Chang, Xiaohui Rong, Ruijuan Xiao, Junmei Zhao, Yanhui Liu, Weihua Wang, Liquan Chen, Yong-Sheng Hu
Nat Energy, 2023, 8, 1221–1228.
DOI: 10.1038/s41560-023-01356-y

Machine learning potential for Ab Initio phase transitions of zirconia

Yuanpeng Deng, Chong Wang, Xiang Xu, Hui Li
Theoretical and Applied Mechanics Letters, 2023, 13, 100481.
DOI: 10.1016/j.taml.2023.100481

Modelling electrified microporous carbon/electrolyte electrochemical interface and unraveling charge storage mechanism by machine learning accelerated molecular dynamics

Yifeng Zhang, Hui Huang, Jie Tian, Chengwei Li, Yuchen Jiang, Zeng Fan, Lujun Pan
Energy Storage Materials, 2023, 63, 103069.
DOI: 10.1016/j.ensm.2023.103069

From ab~initio to continuum: Linking multiple scales using deep-learned forces

Haiyi Wu, Chenxing Liang, Jinu Jeong, N R Aluru
J. Chem. Phys., 2023, 159.
DOI: 10.1063/5.0166927

Superionic effect and anisotropic texture in Earth\textquoterights inner core driven by geomagnetic field

Shichuan Sun, Yu He, Junyi Yang, Yufeng Lin, Jinfeng Li, Duck Young Kim, Heping Li, Ho-Kwang Mao
Nat. Commun., 2023, 14, 1656.
DOI: 10.1038/s41467-023-37376-1

Data-driven prediction of complex crystal structures of dense lithium

Xiaoyang Wang, Zhenyu Wang, Pengyue Gao, Chengqian Zhang, Jian Lv, Han Wang, Haifeng Liu, Yanchao Wang, Yanming Ma
Nat. Commun., 2023, 14, 2924.
DOI: 10.1038/s41467-023-38650-y

Realistic phase diagram of water from \textquotedblleftfirst principles\textquotedblright data-driven quantum simulations

Sigbj\orn L\oland Bore, Francesco Paesani
Nat. Commun., 2023, 14, 3349.
DOI: 10.1038/s41467-023-38855-1

Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes

Pushun Lu, Yu Xia, Guochen Sun, Dengxu Wu, Siyuan Wu, Wenlin Yan, Xiang Zhu, Jiaze Lu, Quanhai Niu, Shaochen Shi, Zhengju Sha, Liquan Chen, Hong Li, Fan Wu
Nat. Commun., 2023, 14, 4077.
DOI: 10.1038/s41467-023-39686-w

Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field

Bo Lin, Jian Jiang, Xiao Cheng Zeng, Lei Li
Nat. Commun., 2023, 14, 4110.
DOI: 10.1038/s41467-023-39829-z

Discrepancies and error evaluation metrics for machine learning interatomic potentials

Yunsheng Liu, Xingfeng He, Yifei Mo
npj Comput Mater, 2023, 9, 174.
DOI: 10.1038/s41524-023-01123-3

Dislocation-mediated migration of the $\alpha$/$\beta$ interfaces in titanium

Jin-Yu Zhang, Zhi-Peng Sun, Dong Qiu, Fu-Zhi Dai, Yang- Sheng Zhang, Dongsheng Xu, Wen-Zheng Zhang
Acta Materialia, 2023, 261, 119364.
DOI: 10.1016/j.actamat.2023.119364

What dictates soft clay-like lithium superionic conductor formation from rigid salts mixture

Sunny Gupta, Xiaochen Yang, Gerbrand Ceder
Nat. Commun., 2023, 14, 6884.
DOI: 10.1038/s41467-023-42538-2

Interfacial heat and mass transfer at silica/binary molten salt interface from deep potential molecular dynamics

Fei Liang, Jing Ding, Xiaolan Wei, Gechuanqi Pan, Shule Liu
International Journal of Heat and Mass Transfer, 2023, 217, 124705.
DOI: 10.1016/j.ijheatmasstransfer.2023.124705

Reversible and irreversible photon-absorption in amorphous SiO2 revealed by deep potential

Yongnian Qi, Xiaoguang Guo, Ming Li, Chongkun Wang, Qing Mu, Ping Zhou
Journal of Non-Crystalline Solids, 2023, 622, 122682.
DOI: 10.1016/j.jnoncrysol.2023.122682

Thermal conductivity of van der Waals heterostructure of 2D GeS and SnS based on machine learning interatomic potential

Wentao Li, Chenxiu Yang
J. Phys. Condens. Matter, 2023, 35, 505001.
DOI: 10.1088/1361-648X/acf6ea

Development of Deep Potentials of Molten MgCl2-NaCl and MgCl2-KCl Salts Driven by Machine Learning

Tingrui Xu, Xuejiao Li, Yang Wang, Zhongfeng Tang
ACS Appl. Mater. Interfaces, 2023.
DOI: 10.1021/acsami.2c19272

Medium-entropy ceramic aerogels for robust thermal sealing

Shubin Fu, Dizhou Liu, Yuanpeng Deng, Menglin Li, Han Zhao, Jingran Guo, Jian Zhou, Pengyu Zhang, Chong Wang, Hongxuan Yu, Shixuan Dang, Jianing Zhang, Menglong Hao, Hui Li, Xiang Xu
J. Mater. Chem. A, 2023, 11, 742–752.
DOI: 10.1039/d2ta08264k

Grain boundaries induce significant decrease in lattice thermal conductivity of CdTe

Xiaona Huang, Kun Luo, Yidi Shen, Yanan Yue, Qi An
Energy and AI, 2023, 11, 100210.
DOI: 10.1016/j.egyai.2022.100210

Revisiting the structure, interaction, and dynamical property of ionic liquid from the deep learning force field

Yulong Ling, Kun Li, Mi Wang, Junfeng Lu, Chenlu Wang, Yanlei Wang, Hongyan He
Journal of Power Sources, 2023, 555, 232350.
DOI: 10.1016/j.jpowsour.2022.232350

Quasiplastic deformation in shocked nanocrystalline boron carbide: Grain boundary sliding and local amorphization

Jun Li, Qi An
Journal of the European Ceramic Society, 2023, 43, 208–216.
DOI: 10.1016/j.jeurceramsoc.2022.10.014

Accurate Fe-He machine learning potential for studying He effects in BCC-Fe

Krishna Chaitanya Pitike, Wahyu Setyawan
Journal of Nuclear Materials, 2023, 574, 154183.
DOI: 10.1016/j.jnucmat.2022.154183

Solvation structures of calcium and magnesium ions in water with the presence of hydroxide: a study by deep potential molecular dynamics

Jianchuan Liu, Renxi Liu, Yu Cao, Mohan Chen
Phys. Chem. Chem. Phys., 2023.
DOI: 10.1039/d2cp04105g

Grain boundary sliding and distortion on a nanosecond timescale induce trap states in CsPbBr3: ab initio investigation with machine learning force field

Dongyu Liu, Yifan Wu, Andrey S Vasenko, Oleg V Prezhdo
Nanoscale, 2023, 15, 285–293.
DOI: 10.1039/d2nr05918e

Accurate interatomic potential for the nucleation in liquid Ti-Al binary alloy developed by deep neural network learning method

B. Zhai, H.P. Wang
Computational Materials Science, 2023, 216, 111843.
DOI: 10.1016/j.commatsci.2022.111843

2022

Convergence acceleration in machine learning potentials for atomistic simulations

Dylan Bayerl, Christopher M. Andolina, Shyam Dwaraknath, Wissam A. Saidi
Digital Discovery, 2022, 1, 61–69.
DOI: 10.1039/d1dd00005e

Towards fully ab initio simulation of atmospheric aerosol nucleation

Shuai Jiang, Yi-Rong Liu, Teng Huang, Ya-Juan Feng, Chun- Yu Wang, Zhong-Quan Wang, Bin-Jing Ge, Quan-Sheng Liu, Wei-Ran Guang, Wei Huang
Nat. Commun., 2022, 13, 6067.
DOI: 10.1038/s41467-022-33783-y

Thermoelectric Figure of Merit of a Superatomic Crystal ReSeI2 Monolayer

Tingwei Li, Peng-Hu Du, Ling Bai, Qiang Sun, Puru Jena
Phys. Rev. Applied, 2022, 18, 64067.
DOI: 10.1103/PhysRevApplied.18.064067

Deep learning molecular dynamics simulation on microwave high- temperature dielectric function of silicon nitride

Zhi-Qiang Li, Xiao-Yu Tan, Xin-Lei Duan, Jing-Yi Zhang, Jia-Yue Yang
Acta Phys. Sin., 2022, 71, 247803.
DOI: 10.7498/aps.71.20221002

Transferable Deep Learning Potential Reveals Intermediate-Range Ordering Effects in LiF-NaF-ZrF4 Molten Salt

Rajni Chahal, Santanu Roy, Martin Brehm, Shubhojit Banerjee, Vyacheslav Bryantsev, Stephen T Lam
JACS Au, 2022, 2, 2693–2702.
DOI: 10.1021/jacsau.2c00526

Elasticity and Viscosity of hcp Iron at Earth's Inner Core Conditions From Machine Learning-Based Large-Scale Atomistic Simulations

Zhi Li, Sandro Scandolo
Geophysical Research Letters, 2022, 49.
DOI: 10.1029/2022GL101161

Modeling Chemical Reactions in Alkali Carbonate-Hydroxide Electrolytes with Deep Learning Potentials

Anirban Mondal, Dina Kussainova, Shuwen Yue, Athanassios Z Panagiotopoulos
J. Chem. Theory Comput., 2022.
DOI: 10.1021/acs.jctc.2c00816

Spatial arrangement of dynamic surface species from solid-state NMR and machine learning-accelerated MD simulations

Takeshi Kobayashi, Da-Jiang Liu, Fr'ed'eric A Perras
Chem. Commun. (Camb)., 2022, 58, 13939–13942.
DOI: 10.1039/d2cc05861h

Fluctuations at Metal Halide Perovskite Grain Boundaries Create Transient Trap States: Machine Learning Assisted Ab Initio Analysis

Yifan Wu, Dongyu Liu, Weibin Chu, Bipeng Wang, Andrey S Vasenko, Oleg V Prezhdo
ACS Appl. Mater. Interfaces, 2022, 14, 55753–55761.
DOI: 10.1021/acsami.2c16203

Modeling Short-Range and Three-Membered Ring Structures in Lithium Borosilicate Glasses Using a Machine-Learning Potential

Shingo Urata
J. Phys. Chem. C, 2022, 126, 21507–21517.
DOI: 10.1021/acs.jpcc.2c07597

Lattice Thermal Conductivity of MgSiO3 Perovskite and Post- Perovskite under Lower Mantle Conditions Calculated by Deep Potential Molecular Dynamics

Fenghu Yang, Qiyu Zeng, Bo Chen, Dongdong Kang, Shen Zhang, Jianhua Wu, Xiaoxiang Yu, Jiayu Dai
Chinese Phys. Lett., 2022, 39, 116301.
DOI: 10.1088/0256-307X/39/11/116301

Origin of the herringbone reconstruction of Au(111) surface at the atomic scale

Pai Li, Feng Ding
Sci. Adv., 2022, 8, eabq2900.
DOI: 10.1126/sciadv.abq2900

Resolving the odd-even oscillation of water dissociation at rutile TiO2(110)-water interface by machine learning accelerated molecular dynamics

Yong-Bin Zhuang, Rui-Hao Bi, Jun Cheng
J. Chem. Phys., 2022, 157, 164701.
DOI: 10.1063/5.0126333

Evaluation of Machine Learning Interatomic Potentials for the Properties of Gold Nanoparticles

Marco Fronzi, Roger D Amos, Rika Kobayashi, Naoki Matsumura, Kenta Watanabe, Rafael K Morizawa
Nanomaterials (Basel)., 2022, 12, 3891.
DOI: 10.3390/nano12213891

Predicted superconductivity and superionic state in the electride Li5N under high pressure

Zhongyu Wan, Chao Zhang, Tianyi Yang, Wenjun Xu, Ruiqin Zhang
New J. Phys., 2022, 24, 113012.
DOI: 10.1088/1367-2630/ac9cff

Origin of negative thermal expansion and pressure-induced amorphization in zirconium tungstate from a machine-learning potential

Ri He, Hongyu Wu, Yi Lu, Zhicheng Zhong
Phys. Rev. B, 2022, 106, 174101.
DOI: 10.1103/PhysRevB.106.174101

Phonon Thermal Transport in Bi2Te3 from a Deep-Neural-Network Interatomic Potential

Robert D McMichael, Sean M Blakley
Phys. Rev. Appl., 2022, 18, 54022.
DOI: 10.1103/PhysRevApplied.18.054022

Piezo- and Pyroelectricity in Zirconia: A Study with Machine-Learned Force Fields

Robert D McMichael, Sean M Blakley
Phys. Rev. Appl., 2022, 18, 54066.
DOI: 10.1103/PhysRevApplied.18.054066

Classical and machine learning interatomic potentials for BCC vanadium

Rui Wang, Xiaoxiao Ma, Linfeng Zhang, Han Wang, David J. Srolovitz, Tongqi Wen, Zhaoxuan Wu
Phys. Rev. Materials, 2022, 6, 113603.
DOI: 10.1103/PhysRevMaterials.6.113603

Order of magnitude reduction in Joule heating of single molecular junctions between graphene electrodes

Gen Li, Bing-Zhong Hu, Wen-Hao Mao, Nuo Yang, Jing-Tao L"u
J. Chem. Phys., 2022, 157, 174303.
DOI: 10.1063/5.0118952

Plastic deformation of superionic water ices

Filipe Matusalem, J'essica Santos Rego, Maurice de Koning
Proc. Natl. Acad. Sci. U. S. A., 2022, 119, e2203397119.
DOI: 10.1073/pnas.2203397119

Metal Affinity of Support Dictates Sintering of Gold Catalysts

Jin-Cheng Liu, Langli Luo, Hai Xiao, Junfa Zhu, Yang He, Jun Li
J. Am. Chem. Soc., 2022, 144, 20601–20609.
DOI: 10.1021/jacs.2c06785

Multireference Generalization of the Weighted Thermodynamic Perturbation Method

Timothy J Giese, Jinzhe Zeng, Darrin M York
J. Phys. Chem. A, 2022, 126, 8519–8533.
DOI: 10.1021/acs.jpca.2c06201

Thermal Conductivity of Hydrous Wadsleyite Determined by Non-Equilibrium Molecular Dynamics Based on Machine Learning

Dong Wang, Zhongqing Wu, Xin Deng
Geophysical Research Letters, 2022, 49.
DOI: 10.1029/2022GL100337

DeePKS + ABACUS as a Bridge between Expensive Quantum Mechanical Models and Machine Learning Potentials

Wenfei Li, Qi Ou, Yixiao Chen, Yu Cao, Renxi Liu, Chunyi Zhang, Daye Zheng, Chun Cai, Xifan Wu, Han Wang, Mohan Chen, Linfeng Zhang
J. Phys. Chem. A, 2022, 126, 9154–9164.
DOI: 10.1021/acs.jpca.2c05000

Centroid Molecular Dynamics Can Be Greatly Accelerated through Neural Network Learned Centroid Forces Derived from Path Integral Molecular Dynamics

Timothy D Loose, Patrick G Sahrmann, Gregory A Voth
J. Chem. Theory Comput., 2022, 18, 5856–5863.
DOI: 10.1021/acs.jctc.2c00706

Moir'e Phonons in Magic-Angle Twisted Bilayer Graphene

Xiaoqian Liu, Ran Peng, Zhaoru Sun, Jianpeng Liu
Nano Lett., 2022, 22, 7791–7797.
DOI: 10.1021/acs.nanolett.2c02010

Modeling the Solvation and Acidity of Carboxylic Acids Using an Ab Initio Deep Neural Network Potential

Abhinav S Raman, Annabella Selloni
J. Phys. Chem. A, 2022, 126, 7283–7290.
DOI: 10.1021/acs.jpca.2c06252

Photoelectron spectra of water and simple aqueous solutions at extreme conditions

Zifan Ye, Cunzhi Zhang, Giulia Galli
Faraday Discuss., 2022, 236, 352–363.
DOI: 10.1039/d2fd00003b

Deep potential for a face-centered cubic Cu system at finite temperatures

Yunzhen Du, Zhaocang Meng, Qiang Yan, Canglong Wang, Yuan Tian, Wenshan Duan, Sheng Zhang, Ping Lin
Phys. Chem. Chem. Phys., 2022, 24, 18361–18369.
DOI: 10.1039/D2CP02758E

Thermal transport properties of monolayer GeS and SnS: A comparative study based on machine learning and SW interatomic potential models

Wentao Li, Chenxiu Yang
AIP Advances, 2022, 12, 85111.
DOI: 10.1063/5.0099448

Structural and electrocatalytic properties of copper clusters: A study via deep learning and first principles

Xiaoning Wang, Haidi Wang, Qiquan Luo, Jinlong Yang
J. Chem. Phys., 2022, 157, 74304.
DOI: 10.1063/5.0100505

A Deep Neural Network Interface Potential for Li-Cu Systems

Genming Lai, Junyu Jiao, Chi Fang, Ruiqi Zhang, Xianqi Xu, Liyuan Sheng, Yao Jiang, Chuying Ouyang, Jiaxin Zheng
Adv Materials Inter, 2022, 9, 2201346.
DOI: 10.1002/admi.202201346

Strategy to consider element distribution when constructing training datasets for developing machine learning potentials of alloys based on a Monte-Carlo-like method

Zhipeng Zhang, Liuqing Chen, Junyi Guo, Xianyin Duan, Bin Shan, Xianbao Duan
Phys. Rev. B, 2022, 106, 94107.
DOI: 10.1103/PhysRevB.106.094107

Combining Machine Learning Approaches and Accurate Ab Initio Enhanced Sampling Methods for Prebiotic Chemical Reactions in Solution

Timoth'ee Devergne, Th'eo Magrino, Fabio Pietrucci, A Marco Saitta
J. Chem. Theory Comput., 2022, 18, 5410–5421.
DOI: 10.1021/acs.jctc.2c00400

GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations

Zheyong Fan, Yanzhou Wang, Penghua Ying, Keke Song, Junjie Wang, Yong Wang, Zezhu Zeng, Ke Xu, Eric Lindgren, J Magnus Rahm, Alexander J Gabourie, Jiahui Liu, Haikuan Dong, Jianyang Wu, Yue Chen, Zheng Zhong, Jian Sun, Paul Erhart, Yanjing Su, Tapio Ala-Nissila
J. Chem. Phys., 2022, 157, 114801.
DOI: 10.1063/5.0106617

Magnetocaloric effect in ScGdTbDyHo high-entropy alloy: Impact of synthesis route

S.A. Uporov, S. Kh Estemirova, E.V. Sterkhov, I.A. Balyakin, A.A. Rempel
Intermetallics, 2022, 151, 107678.
DOI: 10.1016/j.intermet.2022.107678

A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment

Xiaoyang Wang, Yinan Wang, Linfeng Zhang, Fuzhi Dai, Han Wang
Nucl. Fusion, 2022, 62, 126013.
DOI: 10.1088/1741-4326/ac888b

Molecular dynamics simulations of LiCl ion pairs in high temperature aqueous solutions by deep learning potential

Wei Zhang, Li Zhou, Bin Yang, Tinggui Yan
Journal of Molecular Liquids, 2022, 367, 120500.
DOI: 10.1016/j.molliq.2022.120500

DP Compress: A Model Compression Scheme for Generating Efficient Deep Potential Models

Denghui Lu, Wanrun Jiang, Yixiao Chen, Linfeng Zhang, Weile Jia, Han Wang, Mohan Chen
J. Chem. Theory Comput., 2022, 18, 5555–5567.
DOI: 10.1021/acs.jctc.2c00102

Combining Machine Learning Approaches and Accurate Ab Initio Enhanced Sampling Methods for Prebiotic Chemical Reactions in Solution

Timoth'ee Devergne, Th'eo Magrino, Fabio Pietrucci, A Marco Saitta
J. Chem. Theory Comput., 2022.
DOI: 10.1021/acs.jctc.2c00400

A Deep Neural Network Interface Potential for Li-Cu Systems

Genming Lai, Junyu Jiao, Chi Fang, Ruiqi Zhang, Xianqi Xu, Liyuan Sheng, Yao Jiang, Chuying Ouyang, Jiaxin Zheng
Adv Materials Inter, 2022, 2201346.
DOI: 10.1002/admi.202201346

Nucleation of Water Clusters in Gas Phase: A Computational Study Based on Neural Network Potential and Enhanced Sampling\textreferencemark

Sen Xu, Liling Wu, Zhenyu Li
Acta Chimica Sinica, 2022, 80, 598.
DOI: 10.6023/A22010003

Toward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural Networks

Jinfeng Liu, Jinggang Lan, Xiao He
J. Phys. Chem. A, 2022, 126, 3926–3936.
DOI: 10.1021/acs.jpca.2c00601

A Deep Neural Network Potential for Water Confined in Graphene Nanocapillaries

Wen Zhao, Hu Qiu, Wanlin Guo
J. Phys. Chem. C, 2022, 126, 10546–10553.
DOI: 10.1021/acs.jpcc.2c02423

Soft-phonon anharmonicity, floppy modes, and Na diffusion in Na3FY (Y=S,Se,Te): Ab initio and machine-learned molecular dynamics simulations

Mayanak Kumar Gupta, Sajan Kumar, Ranjan Mittal, Samrath L. Chaplot
Phys. Rev. B, 2022, 106, 14311.
DOI: 10.1103/PhysRevB.106.014311

Combined QM/MM, Machine Learning Path Integral Approach to Compute Free Energy Profiles and Kinetic Isotope Effects in RNA Cleavage Reactions

Timothy J Giese, Jinzhe Zeng, Şölen Ekesan, Darrin M York
J. Chem. Theory Comput., 2022, 18, 4304–4317.
DOI: 10.1021/acs.jctc.2c00151

Automated workflow for computation of redox potentials, acidity constants, and solvation free energies accelerated by machine learning

Feng Wang, Jun Cheng
J. Chem. Phys., 2022, 157, 24103.
DOI: 10.1063/5.0098330

Homogeneous ice nucleation in an ab initio machine-learning model of water

Pablo M Piaggi, Jack Weis, Athanassios Z Panagiotopoulos, Pablo G Debenedetti, Roberto Car
Proc. Natl. Acad. Sci. U. S. A., 2022, 119, e2207294119.
DOI: 10.1073/pnas.2207294119

High accuracy neural network interatomic potential for NiTi shape memory alloy

Hao Tang, Yin Zhang, Qing-Jie Li, Haowei Xu, Yuchi Wang, Yunzhi Wang, Ju Li
Acta Materialia, 2022, 238, 118217.
DOI: 10.1016/j.actamat.2022.118217

Machine Learning Accelerates Molten Salt Simulations: Thermal Conductivity of MgCl 2 -NaCl Eutectic

Wenshuo Liang, Guimin Lu, Jianguo Yu
Advcd Theory and Sims, 2022, 2200206.
DOI: 10.1002/adts.202200206

Machine Learning Force Field Aided Cluster Expansion Approach to Configurationally Disordered Materials: Critical Assessment of Training Set Selection and Size Convergence

Jun-Zhong Xie, Xu-Yuan Zhou, Dong Luan, Hong Jiang
J. Chem. Theory Comput., 2022, 18, 3795–3804.
DOI: 10.1021/acs.jctc.2c00017

Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66

Siddarth K Achar, Jacob J Wardzala, Leonardo Bernasconi, Linfeng Zhang, J Karl Johnson
J. Chem. Theory Comput., 2022, 18, 3593–3606.
DOI: 10.1021/acs.jctc.2c00010

Deep neural network based quantum simulations and quasichemical theory for accurate modeling of molten salt thermodynamics

Yu Shi, Stephen T. Lam, Thomas~L. Beck
Chem. Sci., 2022.
DOI: 10.1039/D2SC02227C

Towards large-scale and spatiotemporally resolved diagnosis of electronic density of states by deep learning

Qiyu Zeng, Bo Chen, Xiaoxiang Yu, Shen Zhang, Dongdong Kang, Han Wang, Jiayu Dai
Phys. Rev. B, 2022, 105, 174109.
DOI: 10.1103/PhysRevB.105.174109

Exploring Complex Reaction Networks Using Neural Network-Based Molecular Dynamics Simulation

Qingzhao Chu, Kai H Luo, Dongping Chen
J. Phys. Chem. Lett., 2022, 13, 4052–4057.
DOI: 10.1021/acs.jpclett.2c00647

Reaction processes at step edges on S-decorated Cu(111) and Ag(111) surfaces: MD analysis utilizing machine learning derived potentials

Da-Jiang Liu, James W Evans
J. Chem. Phys., 2022, 156, 204106.
DOI: 10.1063/5.0089210

Deep machine learning potential for atomistic simulation of Fe-Si-O systems under Earth's outer core conditions

Chao Zhang, Ling Tang, Yang Sun, Kai-Ming Ho, Renata M. Wentzcovitch, Cai-Zhuang Wang
Phys. Rev. Materials, 2022, 6, 63802.
DOI: 10.1103/PhysRevMaterials.6.063802

Accelerated Deep Learning Dynamics for Atomic Layer Deposition of Al(Me)3 and Water on OH/Si(111)

Hiroya Nakata, Michael Filatov Gulak, Cheol Ho Choi
ACS Appl. Mater. Interfaces, 2022, 14, 26116–26127.
DOI: 10.1021/acsami.2c01768

Acids at the Edge: Why Nitric and Formic Acid Dissociations at Air-Water Interfaces Depend on Depth and on Interface Specific Area

Miguel de la Puente, Rolf David, Axel Gomez, Damien Laage
J. Am. Chem. Soc., 2022, 144, 10524–10529.
DOI: 10.1021/jacs.2c03099

Strongly Anharmonic Phonons and Their Role in Superionic Diffusion and Ultralow Thermal Conductivity of Cu 7 PSe 6

Mayanak K. Gupta, Jingxuan Ding, Dipanshu Bansal, Douglas L. Abernathy, Georg Ehlers, Naresh C. Osti, Wolfgang G. Zeier, Olivier Delaire
Advanced Energy Materials, 2022, 12, 2200596.
DOI: 10.1002/aenm.202200596

Atomistic Calculation of the Melting Point of the High-Entropy Cantor Alloy CoCrFeMnNi

I. A. Balyakin, A. A. Rempel
Dokl Phys Chem, 2022, 502, 11–17.
DOI: 10.1134/S0012501622010018

Deep potential development of transition-metal-rich carbides

Tyler McGilvry-James, Bikash Timalsina, Marium Mostafiz Mou, Ridwan Sakidja
MRS Advances, 2022, 7, 468–473.
DOI: 10.1557/s43580-022-00289-0

Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture

Pinghui Mo, Chang Li, Dan Zhao, Yujia Zhang, Mengchao Shi, Junhua Li, Jie Liu
npj Comput Mater, 2022, 8, 107.
DOI: 10.1038/s41524-022-00773-z

Dissolving salt is not equivalent to applying a pressure on water

Chunyi Zhang, Shuwen Yue, Athanassios Z Panagiotopoulos, Michael L Klein, Xifan Wu
Nat. Commun., 2022, 13, 822.
DOI: 10.1038/s41467-022-28538-8

Exploring the Effects of Ionic Defects on the Stability of CsPbI 3 with a Deep Learning Potential

Weijie Yang, Jiajia Li, Xuelu Chen, Yajun Feng, Chongchong Wu, Ian D Gates, Zhengyang Gao, Xunlei Ding, Jianxi Yao, Hao Li
Chemphyschem, 2022, 23, e202100841.
DOI: 10.1002/cphc.202100841

Structural phase transitions in $\mathrmSrTi\mathrmO_3$ from deep potential molecular dynamics

Ri He, Hongyu Wu, Linfeng Zhang, Xiaoxu Wang, Fangjia Fu, Shi Liu, Zhicheng Zhong
Phys. Rev. B, 2022, 105, 064104.
DOI: 10.1103/PhysRevB.105.064104

Efficient and accurate atomistic modeling of dopant migration using deep neural network

Xi Ding, Ming Tao, Junhua Li, Mingyuan Li, Mengchao Shi, Jiashu Chen, Zhen Tang, Francis Benistant, Jie Liu
Materials Science in Semiconductor Processing, 2022, 143, 106513.
DOI: 10.1016/j.mssp.2022.106513

Self-Healing Mechanism of Lithium in Lithium Metal

Junyu Jiao, Genming Lai, Liang Zhao, Jiaze Lu, Qidong Li, Xianqi Xu, Yao Jiang, Yan-Bing He, Chuying Ouyang, Feng Pan, Hong Li, Jiaxin Zheng
Adv. Sci. (Weinh)., 2022, 9, e2105574.
DOI: 10.1002/advs.202105574

A deep learning interatomic potential developed for atomistic simulation of carbon materials

Jinjin Wang, Hong Shen, Riyi Yang, Kun Xie, Chao Zhang, Liangyao Chen, Kai-Ming Ho, Cai-Zhuang Wang, Songyou Wang
Carbon, 2022, 186, 1–8.
DOI: 10.1016/j.carbon.2021.09.062

Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water

Manyi Yang, Luigi Bonati, Daniela Polino, Michele Parrinello
Catalysis Today, 2022, 387, 143–149.
DOI: 10.1016/j.cattod.2021.03.018

Development of neural network potential for MD simulation and its application to TiN

Takeru Miyagawa, Kazuki Mori, Nobuhiko Kato, Akio Yonezu
Computational Materials Science, 2022, 206, 111303.
DOI: 10.1016/j.commatsci.2022.111303

Ab Initio Neural Network MD Simulation of Thermal Decomposition of High Energy Material CL-20/TNT

Liqun Cao, Jinzhe Zeng, Bo Wang, Tong Zhu, John Z.H. Zhang
Physical Chemistry Chemical Physics, 2022, 24, 11801–11811.
DOI: 10.1039/D2CP00710J

Temperature- and vacancy-concentration-dependence of heat transport in Li3ClO from multi-method numerical simulations

Paolo Pegolo, Stefano Baroni, Federico Grasselli
npj Comput Mater, 2022, 8, 24.
DOI: 10.1038/s41524-021-00693-4

Grain boundary segregation induced strong UHTCs at elevated temperatures: A universal mechanism from conventional UHTCs to high entropy UHTCs

Fu-Zhi Dai, Bo Wen, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou
Journal of Materials Science & Technology, 2022, 123, 26-33.
DOI: 10.1016/j.jmst.2021.12.074

The chemical origin of temperature-dependent lithium-ion concerted diffusion in sulfide solid electrolyte Li10GeP2S12

Zhong-Heng Fu, Xiang Chen, Nan Yao, Xin Shen, Xia-Xia Ma, Shuai Feng, Shuhao Wang, Rui Zhang, Linfeng Zhang, Qiang Zhang
Journal of Energy Chemistry, 2022, 70, 59–66.
DOI: 10.1016/j.jechem.2022.01.018

Study on the structural properties of refining slags by molecular dynamics with deep learning potential

Yuhan Sun, Min Tan, Tao Li, Junguo Li, Bo Shang
Journal of Molecular Liquids, 2022, 353, 118787.
DOI: 10.1016/j.molliq.2022.118787

Nanotwinning induced decreased lattice thermal conductivity of high temperature thermoelectric boron subphosphide (B12P2) from deep learning potential simulations

Xiaona Huang, Yidi Shen, Qi An
Energy and AI, 2022, 8, 100135.
DOI: 10.1016/j.egyai.2022.100135

A deep potential model with long-range electrostatic interactions

Linfeng Zhang, Han Wang, Maria Carolina Muniz, Athanassios Z Panagiotopoulos, Roberto Car, Weinan E
J. Chem. Phys., 2022, 156, 124107.
DOI: 10.1063/5.0083669

Four-Phonon Scattering Effect and Two-Channel Thermal Transport in Two-Dimensional Paraelectric SnSe

Jie Sun, Cunzhi Zhang, Zhonghua Yang, Yiheng Shen, Ming Hu, Qian Wang
ACS Appl. Mater. Interfaces, 2022, 14, 11493–11499.
DOI: 10.1021/acsami.1c24488

An inductive transfer learning force field (ITLFF) protocol builds protein force fields in seconds

Yanqiang Han, Zhilong Wang, An Chen, Imran Ali, Junfei Cai, Simin Ye, Jinjin Li
Brief. Bioinform., 2022, 23.
DOI: 10.1093/bib/bbab590

Sulfur-enhanced dynamics of coinage metal(111) surfaces: Step edges versus terraces as locations for metal-sulfur complex formation

Da-Jiang Liu, James W. Evans
Journal of Vacuum Science \& Technology A, 2022, 40 (2), 023205.
DOI: 10.1116/6.0001408

A generalizable machine learning potential of Ag-Au nanoalloys and its application to surface reconstruction, segregation and diffusion

YiNan Wang, LinFeng Zhang, Ben Xu, XiaoYang Wang, Han Wang
Modelling Simul. Mater. Sci. Eng., 2022, 30, 25003.
DOI: 10.1088/1361-651X/ac4002

Deep machine learning potentials for multicomponent metallic melts: Development, predictability and compositional transferability

R.E. Ryltsev, N.M. Chtchelkatchev
Journal of Molecular Liquids, 2022, 349, 118181.
DOI: 10.1016/j.molliq.2021.118181

Neural network potential for Zr-Rh system by machine learning

Kun Xie, Chong Qiao, Hong Shen, Riyi Yang, Ming Xu, Chao Zhang, Yuxiang Zheng, Rongjun Zhang, Liangyao Chen, Kai-Ming Ho, Cai-Zhuang Wang, Songyou Wang
J. Phys. Condens. Matter, 2022, 34, 75402.
DOI: 10.1088/1361-648X/ac37dc

Molecular dynamics simulation of molten strontium chloride based on deep potential

Di Guo, Jia Zhao, Wenshuo Liang, Guimin Lu
Journal of Molecular Liquids, 2022, 348, 118380.
DOI: 10.1016/j.molliq.2021.118380

Suppression of Rayleigh Scattering in Silica Glass by Codoping Boron and Fluorine: Molecular Dynamics Simulations with Force-Matching and Neural Network Potentials

Shingo Urata, Nobuhiro Nakamura, Tomofumi Tada, Aik Rui Tan, Rafael Gómez-Bombarelli, Hideo Hosono
J. Phys. Chem. C, 2022, 126 (4), 2264-2275.
DOI: 10.1021/acs.jpcc.1c10300

A deep learning potential applied in tobermorite phases and extended to calcium silicate hydrates

Yang Zhou, Haojie Zheng, Weihuan Li, Tao Ma, Changwen Miao
Cement and Concrete Research, 2022, 152, 106685.
DOI: 10.1016/j.cemconres.2021.106685

Deep learning potential for superionic phase of Ag2S

I.A. Balyakin, S.I. Sadovnikov
Computational Materials Science, 2022, 202, 110963.
DOI: 10.1016/j.commatsci.2021.110963

Neural network representation of electronic structure from ab initio molecular dynamics

Qiangqiang Gu, Linfeng Zhang, Ji Feng
Science Bulletin, 2022, 67, 29–37.
DOI: 10.1016/j.scib.2021.09.010

2021

Machine learning builds full-QM precision protein force fields in seconds

Yanqiang Han, Zhilong Wang, Zhiyun Wei, Jinyun Liu, Jinjin Li
Brief. Bioinform., 2021, 22.
DOI: 10.1093/bib/bbab158

Efficiently Trained Deep Learning Potential for Graphane

Siddarth K. Achar, Linfeng Zhang, J. Karl Johnson
J. Phys. Chem. C, 2021, 125, 14874–14882.
DOI: 10.1021/acs.jpcc.1c01411

2D Heterostructure of Amorphous CoFeB Coating Black Phosphorus Nanosheets with Optimal Oxygen Intermediate Absorption for Improved Electrocatalytic Water Oxidation

Huayu Chen, Junxiang Chen, Pei Ning, Xin Chen, Junhui Liang, Xin Yao, Da Chen, Laishun Qin, Yuexiang Huang, Zhenhai Wen
ACS Nano, 2021, 15, 12418–12428.
DOI: 10.1021/acsnano.1c04715

Deep potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors

Jianxing Huang, Linfeng Zhang, Han Wang, Jinbao Zhao, Jun Cheng, Weinan E
J. Chem. Phys., 2021, 154, 94703.
DOI: 10.1063/5.0041849

Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme Reactions

Xiaoliang Pan, Junjie Yang, Richard Van, Evgeny Epifanovsky, Junming Ho, Jing Huang, Jingzhi Pu, Ye Mei, Kwangho Nam, Yihan Shao
J. Chem. Theory Comput., 2021, 17, 5745–5758.
DOI: 10.1021/acs.jctc.1c00565

Accurate force field of two-dimensional ferroelectrics from deep learning

Jing Wu, Liyi Bai, Jiawei Huang, Liyang Ma, Jian Liu, Shi Liu
Phys. Rev. B, 2021, 104, 174107.
DOI: 10.1103/PhysRevB.104.174107

Exploring the Chemical Space of Linear Alkane Pyrolysis via Deep Potential GENerator

Jinzhe Zeng, Linfeng Zhang, Han Wang, Tong Zhu
Energy & Fuels, 2021, 35 (1), 762–769.
DOI: 10.1021/acs.energyfuels.0c03211

Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/Molecular Mechanical Simulations of Chemical Reactions in Solution

Jinzhe Zeng, Timothy J Giese, Şölen Ekesan, Darrin M York
J. Chem. Theory Comput., 2021, 17, 6993–7009.
DOI: 10.1021/acs.jctc.1c00201

Reactive uptake of N2O5 by atmospheric aerosol is dominated by interfacial processes

Mirza Galib, David T Limmer
Science, 2021, 371, 921–925.
DOI: 10.1126/science.abd7716

86 PFLOPS Deep Potential Molecular Dynamics simulation of 100 million atoms with ab initio accuracy

Denghui Lu, Han Wang, Mohan Chen, Lin Lin, Roberto Car, Weinan E, Weile Jia, Linfeng Zhang
Computer Physics Communications, 2021, 259, 107624.
DOI: 10.1016/j.cpc.2020.107624

Insights from Computational Studies on the Anisotropic Volume Change of LixNiO2 at High States of Charge (x < 0.25)

Juan C. Garcia, Joshua Gabriel, Noah H. Paulson, John Low, Marius Stan, Hakim Iddir
J. Phys. Chem. C, 2021, 125 (49), 27130-27139.
DOI: 10.1021/acs.jpcc.1c08022

Thermodynamic and Transport Properties of LiF and FLiBe Molten Salts with Deep Learning Potentials

Alejandro Rodriguez, Stephen Lam, Ming Hu
ACS Appl. Mater. Interfaces, 2021, 13, 55367–55379.
DOI: 10.1021/acsami.1c17942

Heat transport in liquid water from first-principles and deep neural network simulations

Davide Tisi, Linfeng Zhang, Riccardo Bertossa, Han Wang, Roberto Car, Stefano Baroni
Phys. Rev. B, 2021, 104, 224202.
DOI: 10.1103/PhysRevB.104.224202

Specialising neural network potentials for accurate properties and application to the mechanical response of titanium

Tongqi Wen, Rui Wang, Lingyu Zhu, Linfeng Zhang, Han Wang, David J. Srolovitz, Zhaoxuan Wu
npj Comput Mater, 2021, 7, 206.
DOI: 10.1038/s41524-021-00661-y

Fast Na diffusion and anharmonic phonon dynamics in superionic Na3PS4

Mayanak K. Gupta, Jingxuan Ding, Naresh C. Osti, Douglas L. Abernathy, William Arnold, Hui Wang, Zachary Hood, Olivier Delaire
Energy Environ. Sci., 2021, 14, 6554-6563.
DOI: 10.1039/D1EE01509E

Experimental observation of localized interfacial phonon modes

Zhe Cheng, Ruiyang Li, Xingxu Yan, Glenn Jernigan, Jingjing Shi, Michael E Liao, Nicholas J Hines, Chaitanya A Gadre, Juan Carlos Idrobo, Eungkyu Lee, Karl D Hobart, Mark S Goorsky, Xiaoqing Pan, Tengfei Luo, Samuel Graham
Nat. Commun., 2021, 12, 6901.
DOI: 10.1038/s41467-021-27250-3

Artificial intelligence model for efficient simulation of monatomic phase change material antimony

Mengchao Shi, Junhua Li, Ming Tao, Xin Zhang, Jie Liu
Materials Science in Semiconductor Processing, 2021, 136, 106146.
DOI: 10.1016/j.mssp.2021.106146

Molecular dynamics simulation of metallic Al-Ce liquids using a neural network machine learning interatomic potential

L Tang, K M Ho, C Z Wang
J. Chem. Phys., 2021, 155, 194503.
DOI: 10.1063/5.0066061

Choosing the right molecular machine learning potential

Max Pinheiro Jr, Fuchun Ge, Nicolas Ferr'e, Pavlo O Dral, Mario Barbatti
Chem. Sci., 2021, 12, 14396–14413.
DOI: 10.1039/d1sc03564a

Atomic structure of liquid refractory Nb5Si3 intermetallic compound alloy based upon deep neural network potential

Q. Wang, B. Zhai, H. P. Wang, B. Wei
Journal of Applied Physics, 2021, 130, 185103.
DOI: 10.1063/5.0067157

Azo(xy) vs Aniline Selectivity in Catalytic Nitroarene Reduction by Intermetallics: Experiments and Simulations

Carena L. Daniels, Da-Jiang Liu, Marquix A. S. Adamson, Megan Knobeloch, Javier Vela
J. Phys. Chem. C, 2021, 125 (44), 24440-24450.
DOI: 10.1021/acs.jpcc.1c08569

Resolving the Structural Debate for the Hydrated Excess Proton in Water

Paul B Calio, Chenghan Li, Gregory A Voth
J. Am. Chem. Soc., 2021, 143, 18672–18683.
DOI: 10.1021/jacs.1c08552

Deep-learning potential method to simulate shear viscosity of liquid aluminum at high temperature and high pressure by molecular dynamics

Yuqing Cheng, Han Wang, Shuaichuang Wang, Xingyu Gao, Qiong Li, Jun Fang, Hongzhou Song, Weidong Chu, Gongmu Zhang, Haifeng Song, Haifeng Liu
AIP Advances, 2021, 11, 15043.
DOI: 10.1063/5.0036298

Gold Segregation Improves Electrocatalytic Activity of Icosahedron Au@Pt Nanocluster: Insights from Machine Learning

Dingming Chen, Zhuangzhuang Lai, Jiawei Zhang, Jianfu Chen, Peijun Hu, Haifeng Wang
Chin. J. Chem., 2021, 39, 3029–3036.
DOI: 10.1002/cjoc.202100352

Condensed Phase Water Molecular Multipole Moments from Deep Neural Network Models Trained on Ab Initio Simulation Data

Yu Shi, Carrie C Doyle, Thomas L Beck
J. Phys. Chem. Lett., 2021, 12, 10310–10317.
DOI: 10.1021/acs.jpclett.1c02328

Learning intermolecular forces at liquid-vapor interfaces

Samuel P Niblett, Mirza Galib, David T Limmer
J. Chem. Phys., 2021, 155, 164101.
DOI: 10.1063/5.0067565

Modeling Liquid Water by Climbing up Jacob\textquoterights Ladder in Density Functional Theory Facilitated by Using Deep Neural Network Potentials

Chunyi Zhang, Fujie Tang, Mohan Chen, Jianhang Xu, Linfeng Zhang, Diana Y Qiu, John P Perdew, Michael L Klein, Xifan Wu
J. Phys. Chem. B, 2021, 125, 11444–11456.
DOI: 10.1021/acs.jpcb.1c03884

Deep Density: Circumventing the Kohn-Sham equations via symmetry preserving neural networks

Leonardo Zepeda-N'u\~nez, Yixiao Chen, Jiefu Zhang, Weile Jia, Linfeng Zhang, Lin Lin
Journal of Computational Physics, 2021, 443, 110523.
DOI: 10.1016/j.jcp.2021.110523

First-principles materials simulation and design for alkali and alkaline metal ion batteries accelerated by machine learning

Lujie Jin, Yujin Ji, Hongshuai Wang, Lifeng Ding, Youyong Li
Phys. Chem. Chem. Phys., 2021, 23, 21470–21483.
DOI: 10.1039/d1cp02963k

Local structure elucidation and properties prediction on KCl-CaCl2 molten salt: A deep potential molecular dynamics study

Min Bu, Wenshuo Liang, Guimin Lu, Jianguo Yu
Solar Energy Materials and Solar Cells, 2021, 232, 111346.
DOI: 10.1016/j.solmat.2021.111346

Using Neural Network Force Fields to Ascertain the Quality of Ab Initio Simulations of Liquid Water

Alberto Torres, Luana S Pedroza, Marivi Fernandez-Serra, Alexandre R Rocha
J. Phys. Chem. B, 2021, 125, 10772–10778.
DOI: 10.1021/acs.jpcb.1c04372

Thermal Conductivity of Silicate Liquid Determined by Machine Learning Potentials

Jie Deng, Lars Stixrude
Geophys Res Lett, 2021, 48, e2021GL093806.
DOI: 10.1029/2021GL093806

Ab initio validation on the connection between atomistic and hydrodynamic description to unravel the ion dynamics of warm dense matter

Qiyu Zeng, Xiaoxiang Yu, Yunpeng Yao, Tianyu Gao, Bo Chen, Shen Zhang, Dongdong Kang, Han Wang, Jiayu Dai
Phys. Rev. Research, 2021, 3, 33116.
DOI: 10.1103/PhysRevResearch.3.033116

Liquid-Liquid Critical Point in Phosphorus

Manyi Yang, Tarak Karmakar, Michele Parrinello
Phys. Rev. Lett., 2021, 127, 80603.
DOI: 10.1103/PhysRevLett.127.080603

Robust, Multi-Length-Scale, Machine Learning Potential for Ag–Au Bimetallic Alloys from Clusters to Bulk Materials

Christopher M. Andolina, Marta Bon, Daniele Passerone, Wissam A. Saidi
J. Phys. Chem. C, 2021, 125 (31), 17438-17447.
DOI: 10.1021/acs.jpcc.1c04403

Improved Al-Mg alloy surface segregation predictions with a machine learning atomistic potential

Md Sabbir Akhanda, S Emad Rezaei, Keivan Esfarjani, Sergiy Krylyuk, Albert V Davydov, Mona Zebarjadi
Phys. Rev. Mater., 2021, 5, 83804.
DOI: 10.1103/PhysRevMaterials.5.083804

Anomalous Behavior of Viscosity and Electrical Conductivity of MgSiO 3 Melt at Mantle Conditions

Haiyang Luo, Bijaya B. Karki, Dipta B. Ghosh, Huiming Bao
Geophys Res Lett, 2021, 48.
DOI: 10.1029/2021GL093573

Deep neural network potentials for diffusional lithium isotope fractionation in silicate melts

Haiyang Luo, Bijaya B. Karki, Dipta B. Ghosh, Huiming Bao
Geochimica et Cosmochimica Acta, 2021, 303, 38–50.
DOI: 10.1016/j.gca.2021.03.031

Phase Diagram of a Deep Potential Water Model

Linfeng Zhang, Han Wang, Roberto Car, Weinan E
Phys. Rev. Lett., 2021, 126, 236001.
DOI: 10.1103/PhysRevLett.126.236001

Theoretical prediction on the local structure and transport properties of molten alkali chlorides by deep potentials

Wenshuo Liang, Guimin Lu, Jianguo Yu
Journal of Materials Science & Technology, 2021, 75, 78-85.
DOI: 10.1016/j.jmst.2020.09.040

The thermoelectric performance of new structure SnSe studied by quotient graph and deep learning potential

D. Guo, C. Li, K. Li, B. Shao, D. Chen, Y. Ma, J. Sun, X. Cao, W. Zeng, X. Chang
Materials Today Energy, 2021, 20, 100665.
DOI: 10.1016/j.mtener.2021.100665

Phase Equilibrium of Water with Hexagonal and Cubic Ice Using the SCAN Functional

Pablo M Piaggi, Athanassios Z Panagiotopoulos, Pablo G Debenedetti, Roberto Car
J. Chem. Theory Comput., 2021, 17, 3065–3077.
DOI: 10.1021/acs.jctc.1c00041

Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: Molecular Dynamics Simulation by Deep Learning Potential

Fu-Zhi Dai, Yinjie Sun, Bo Wen, Huimin Xiang, Yanchun Zhou
Journal of Materials Science & Technology, 2021, 72, 8-15.
DOI: 10.1016/j.jmst.2020.07.014

Theoretical prediction on the redox potentials of rare-earth ions by deep potentials

Jia Zhao, Wenshuo Liang, Guimin Lu
Ionics, 2021, 27, 2079–2088.
DOI: 10.1007/s11581-021-03988-0

Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space*

Wanrun Jiang, Yuzhi Zhang, Linfeng Zhang, Han Wang
Chinese Phys. B, 2021, 30, 50706.
DOI: 10.1088/1674-1056/abf134

Anharmonic Raman spectra simulation of crystals from deep neural networks

Honghui Shang, Haidi Wang
AIP Advances, 2021, 11, 35105.
DOI: 10.1063/5.0040190

Thermal transport by electrons and ions in warm dense aluminum: A combined density functional theory and deep potential study

Qianrui Liu, Junyi Li, Mohan Chen
Matter and Radiation at Extremes, 2021, 6 (2), 026902.
DOI: 10.1063/5.0030123

Crystallization of the P3Sn4 Phase upon Cooling P2Sn5 Liquid by Molecular Dynamics Simulation Using a Machine Learning Interatomic Potential

Chao Zhang, Yang Sun, Hai-Di Wang, Feng Zhang, Tong-Qi Wen, Kai-Ming Ho, Cai-Zhuang Wang
J. Phys. Chem. C, 2021, 125 (5), 3127-3133.
DOI: 10.1021/acs.jpcc.0c08873

Enhancing the formation of ionic defects to study the ice Ih/XI transition with molecular dynamics simulations

Pablo M. Piaggi, Roberto Car
Molecular Physics, 2021, 119.
DOI: 10.1080/00268976.2021.1916634

Static and Dynamic Correlations in Water: Comparison of Classical Ab Initio Molecular Dynamics at Elevated Temperature with Path Integral Simulations at Ambient Temperature

Chenghan Li, Francesco Paesani, Gregory A Voth
J. Chem. Theory Comput., 2022, 18, 2124–2131.
DOI: 10.1021/acs.jctc.1c01223

Molecular dynamics simulations of lanthanum chloride by deep learning potential

Taixi Feng, Jia Zhao, Wenshuo Liang, Guimin Lu
Computational Materials Science, 2021, 111014.
DOI: 10.1016/j.commatsci.2021.111014

Diffusional fractionation of helium isotopes in silicate melts

H. Luo, B.B. Karki, D.B. Ghosh, H. Bao
Geochem. Persp. Let., 2021, 19–22.
DOI: 10.7185/geochemlet.2128

Short- and medium-range orders in Al90Tb10 glass and their relation to the structures of competing crystalline phases

L. Tang, Z.J. Yang, T.Q. Wen, K.M. Ho, M.J. Kramer, C.Z. Wang
Acta Materialia, 2021, 204, 116513.
DOI: 10.1016/j.actamat.2020.116513

A DFT accurate machine learning description of molten ZnCl2 and its mixtures: 2. Potential development and properties prediction of ZnCl2-NaCl-KCl ternary salt for CSP

Gechuanqi Pan, Jing Ding, Yunfei Du, Duu-Jong Lee, Yutong Lu
Computational Materials Science, 2021, 187, 110055.
DOI: 10.1016/j.commatsci.2020.110055

Deep learning of accurate force field of ferroelectric HfO2

Jing Wu, Yuzhi Zhang, Linfeng Zhang, Shi Liu
Phys. Rev. B, 2021, 103, 24108.
DOI: 10.1103/PhysRevB.103.024108

Machine-Learning-Driven Simulations on Microstructure and Thermophysical Properties of MgCl2-KCl Eutectic

Wenshuo Liang, Guimin Lu, Jianguo Yu
ACS Appl. Mater. Interfaces, 2021, 13, 4034–4042.
DOI: 10.1021/acsami.0c20665

Theoretical study of Na+ transport in the solid-state electrolyte Na3OBr based on deep potential molecular dynamics

Han-Xiao Li, Xu-Yuan Zhou, Yue-Chao Wang, Hong Jiang
Inorg. Chem. Front., 2021, 8, 425–432.
DOI: 10.1039/D0QI00921K

When do short-range atomistic machine-learning models fall short?

Shuwen Yue, Maria Carolina Muniz, Marcos F Calegari Andrade, Linfeng Zhang, Roberto Car, Athanassios Z Panagiotopoulos
J. Chem. Phys., 2021, 154, 34111.
DOI: 10.1063/5.0031215

2020

Simulating Diffusion Properties of Solid-State Electrolytes via a Neural Network Potential: Performance and Training Scheme

Aris Marcolongo, Tobias Binninger, Federico Zipoli, Teodoro Laino
Chemsystemschem, 2020, 2 (3).
DOI: 10.1002/syst.201900031

Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics

Marcos F Calegari Andrade, Hsin-Yu Ko, Linfeng Zhang, Roberto Car, Annabella Selloni
Chem. Sci., 2020, 11, 2335–2341.
DOI: 10.1039/C9SC05116C

Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential

Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou
Journal of Materials Science & Technology, 2020, 43, 168–174.
DOI: 10.1016/j.jmst.2020.01.005

A deep neural network interatomic potential for studying thermal conductivity of $\beta$-Ga2O3

Ruiyang Li, Zeyu Liu, Andrew Rohskopf, Kiarash Gordiz, Asegun Henry, Eungkyu Lee, Tengfei Luo
Appl. Phys. Lett., 2020, 117, 152102.
DOI: 10.1063/5.0025051

Structure and dynamics of warm dense aluminum: a molecular dynamics study with density functional theory and deep potential

Qianrui Liu, Denghui Lu, Mohan Chen
J. Phys. Condens. Matter, 2020, 32, 144002.
DOI: 10.1088/1361-648X/ab5890

Ab initio phase diagram and nucleation of gallium

Haiyang Niu, Luigi Bonati, Pablo M Piaggi, Michele Parrinello
Nat. Commun., 2020, 11, 2654.
DOI: 10.1038/s41467-020-16372-9

Raman spectrum and polarizability of liquid water from deep neural networks

Grace M Sommers, Marcos F Calegari Andrade, Linfeng Zhang, Han Wang, Roberto Car
Phys. Chem. Chem. Phys., 2020, 22, 10592–10602.
DOI: 10.1039/D0CP01893G

A machine learning based deep potential for seeking the low-lying candidates of Al clusters

P Tuo, X B Ye, B C Pan
J. Chem. Phys., 2020, 152, 114105.
DOI: 10.1063/5.0001491

Data-driven coarse-grained modeling of polymers in solution with structural and dynamic properties conserved

Shu Wang, Zhan Ma, Wenxiao Pan
Soft Matter, 2020, 16, 8330–8344.
DOI: 10.1039/D0SM01019G

Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation

Jinzhe Zeng, Liqun Cao, Mingyuan Xu, Tong Zhu, John Z. H. Zhang
Nature Communications, 2020, 11, 5713.
DOI: 10.1038/s41467-020-19497-z

Deep neural network for the dielectric response of insulators

Linfeng Zhang, Mohan Chen, Xifan Wu, Han Wang, Weinan E, Roberto Car
Phys. Rev. B, 2020, 102, 41121.
DOI: 10.1103/PhysRevB.102.041121

DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models

Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, Weinan E
Computer Physics Communications, 2020, 253, 107206.
DOI: 10.1016/j.cpc.2020.107206

Isotope effects in molecular structures and electronic properties of liquid water via deep potential molecular dynamics based on the SCAN functional

Jianhang Xu, Chunyi Zhang, Linfeng Zhang, Mohan Chen, Biswajit Santra, Xifan Wu
Phys. Rev. B, 2020, 102, 214113.
DOI: 10.1103/PhysRevB.102.214113

Hydrogen Dynamics in Supercritical Water Probed by Neutron Scattering and Computer Simulations

Carla Andreani, Giovanni Romanelli, Alexandra Parmentier, Roberto Senesi, Alexander I Kolesnikov, Hsin-Yu Ko, Marcos F Calegari Andrade, Roberto Car
J. Phys. Chem. Lett., 2020, 11, 9461–9467.
DOI: 10.1021/acs.jpclett.0c02547

A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases

R. Li, E. Lee, T. Luo
Materials Today Physics, 2020, 12, 100181.
DOI: 10.1016/j.mtphys.2020.100181

Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy

Zhilong Wang, Yanqiang Han, Jinjin Li, Xiao He
J. Phys. Chem. B, 2020, 124, 3027–3035.
DOI: 10.1021/acs.jpcb.0c01370

A Deep-Learning Potential for Crystalline and Amorphous Li-Si Alloys

Nan Xu, Yao Shi, Yi He, Qing Shao
J. Phys. Chem. C, 2020, 124, 16278–16288.
DOI: 10.1021/acs.jpcc.0c03333

Development of interatomic potential for Al-Tb alloys using a deep neural network learning method

L Tang, Z J Yang, T Q Wen, K M Ho, M J Kramer, C Z Wang
Phys. Chem. Chem. Phys., 2020, 22, 18467–18479.
DOI: 10.1039/D0CP01689F

Isotope effects in x-ray absorption spectra of liquid water

Chunyi Zhang, Linfeng Zhang, Jianhang Xu, Fujie Tang, Biswajit Santra, Xifan Wu
Phys. Rev. B, 2020, 102, 115155.
DOI: 10.1103/PhysRevB.102.115155

Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics

Yuzhi Zhang, Chang Gao, Qianrui Liu, Linfeng Zhang, Han Wang, Mohan Chen
Physics of Plasmas, 2020, 27, 122704.
DOI: 10.1063/5.0023265

Molecular Dynamics Simulations of Molten Magnesium Chloride Using Machine-Learning-Based Deep Potential

Wenshuo Liang, Guimin Lu, Jianguo Yu
Adv. Theory Simul., 2020, 3, 2000180.
DOI: 10.1002/adts.202000180

Grain boundary strengthening in ZrB2 by segregation of W: Atomistic simulations with deep learning potential

Fu-Zhi Dai, Bo Wen, Huimin Xiang, Yanchun Zhou
Journal of the European Ceramic Society, 2020, 40, 5029–5036.
DOI: 10.1016/j.jeurceramsoc.2020.06.007

Crystal Structure Prediction of Binary Alloys via Deep Potential

Haidi Wang, Yuzhi Zhang, Linfeng Zhang, Han Wang
Front. Chem., 2020, 8, 589795.
DOI: 10.3389/fchem.2020.589795

Deep machine learning interatomic potential for liquid silica

I A Balyakin, S V Rempel, R E Ryltsev, A A Rempel
Phys. Rev. E, 2020, 102, 52125.
DOI: 10.1103/PhysRevE.102.052125

Structure of disordered TiO2 phases from ab initio based deep neural network simulations

Marcos F. Calegari Andrade, Annabella Selloni
Phys. Rev. Materials, 2020, 4, 113803.
DOI: 10.1103/PhysRevMaterials.4.113803

Signatures of a liquid-liquid transition in an ab initio deep neural network model for water

Thomas E Gartner 3rd, Linfeng Zhang, Pablo M Piaggi, Roberto Car, Athanassios Z Panagiotopoulos, Pablo G Debenedetti
Proc. Natl. Acad. Sci. U. S. A., 2020, 117, 26040–26046.
DOI: 10.1073/pnas.2015440117

2019

Active learning of uniformly accurate interatomic potentials for materials simulation

Linfeng Zhang, De-Ye Lin, Han Wang, Roberto Car, Weinan E
Phys. Rev. Materials, 2019, 3, 23804.
DOI: 10.1103/PhysRevMaterials.3.023804

Isotope effects in liquid water via deep potential molecular dynamics

Hsin-Yu Ko, Linfeng Zhang, Biswajit Santra, Han Wang, Weinan E, Robert A. DiStasio Jr, Roberto Car
Molecular Physics, 2019, 117, 3269–3281.
DOI: 10.1080/00268976.2019.1652366

Development of a deep machine learning interatomic potential for metalloid-containing Pd-Si compounds

Tongqi Wen, Cai-Zhuang Wang, M. J. Kramer, Yang Sun, Beilin Ye, Haidi Wang, Xueyuan Liu, Chao Zhang, Feng Zhang, Kai-Ming Ho, Nan Wang
Phys. Rev. B, 2019, 100, 174101.
DOI: 10.1103/PhysRevB.100.174101

Deep learning inter-atomic potential model for accurate irradiation damage simulations

Hao Wang, Xun Guo, Linfeng Zhang, Han Wang, Jianming Xue
Appl. Phys. Lett., 2019, 114, 244101.
DOI: 10.1063/1.5098061

2018

Silicon Liquid Structure and Crystal Nucleation from Ab~Initio Deep Metadynamics

Luigi Bonati, Michele Parrinello
Phys. Rev. Lett., 2018, 121, 265701.
DOI: 10.1103/PhysRevLett.121.265701

Deep Learning for Nonadiabatic Excited-State Dynamics

Wen-Kai Chen, Xiang-Yang Liu, Wei-Hai Fang, Pavlo O Dral, Ganglong Cui
J. Phys. Chem. Lett., 2018, 9, 6702–6708.
DOI: 10.1021/acs.jpclett.8b03026

Adaptive coupling of a deep neural network potential to a classical force field

Linfeng Zhang, Han Wang, Weinan E
J. Chem. Phys., 2018, 149, 154107.
DOI: 10.1063/1.5042714

DeePCG: Constructing coarse-grained models via deep neural networks

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, Weinan E
J. Chem. Phys., 2018, 149, 34101.
DOI: 10.1063/1.5027645

DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

Han Wang, Linfeng Zhang, Jiequn Han, Weinan E
Computer Physics Communications, 2018, 228, 178–184.
DOI: 10.1016/j.cpc.2018.03.016

Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, Weinan E
Phys. Rev. Lett., 2018, 120, 143001.
DOI: 10.1103/PhysRevLett.120.143001

0%