DeepModeling

Define the future of scientific computing together

Publications driven by Uni-Mol

The following publications have used the Uni-Mol software. Publications that only mentioned the Uni-Mol will not be included below.

We encourage explicitly mentioning Uni-Mol with proper citations in your publications, so we can more easily find and list these publications.

Last update date: 12/05/2024

2024

Node-Aligned Graph-to-Graph: Elevating Template-free Deep Learning Approaches in Single-Step Retrosynthesis

Lin Yao, Wentao Guo, Zhen Wang, Shang Xiang, Wentan Liu, Guolin Ke
Jacs Au, 2024, 4 (3), 992–1003.
DOI: 10.1021/jacsau.3c00737

Learning Multi-view Molecular Representations with Structured and Unstructured Knowledge

Yizhen Luo, Kai Yang, Massimo Hong, Xing Yi Liu, Zikun Nie, Hao Zhou, Zaiqing Nie
arXiv, 2024, 2406.09841.
DOI: 10.48550/arXiv.2406.09841

Mol-AE: Auto-Encoder Based Molecular Representation Learning With 3D Cloze Test Objective

Junwei Yang, Kangjie Zheng, Siyu Long, Zaiqing Nie, Ming Zhang, Xinyu Dai, Wei-Ying Ma, Hao Zhou
Biorxiv, 2024.
DOI: 10.1101/2024.04.13.589331

MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand- Target Binding Analysis

Shikun Feng, Jiaxin Zheng, Yinjun Jia, Yanwen Huang, Fengfeng Zhou, Wei-Ying Ma, Yanyan Lan
arXiv, 2024, 2406.17797.
DOI: 10.48550/arXiv.2406.17797

Towards 3D Molecule-Text Interpretation in Language Models

Sihang Li, Zhiyuan Liu, Yanchen Luo, Xiang Wang, Xiangnan He, Kenji Kawaguchi, Tat-Seng Chua, Qi Tian
arXiv, 2024, 2401.13923.
DOI: 10.48550/arXiv.2401.13923

3D-MolT5: Towards Unified 3D Molecule-Text Modeling with 3D Molecular Tokenization

Qizhi Pei, Lijun Wu, Kaiyuan Gao, Jinhua Zhu, Rui Yan
arXiv, 2024, 2406.05797.
DOI: 10.48550/arXiv.2406.05797

From Theory to Therapy: Reframing SBDD Model Evaluation via Practical Metrics

Bowen Gao, Haichuan Tan, Yanwen Huang, Minsi Ren, Xiao Huang, Wei-Ying Ma, Ya-Qin Zhang, Yanyan Lan
arXiv, 2024, 2406.08980.
DOI: 10.48550/arXiv.2406.08980

MolBind: Multimodal Alignment of Language, Molecules, and Proteins

Teng Xiao, Chao Cui, Huaisheng Zhu, Vasant G. Honavar
arXiv, 2024, 2403.08167.
DOI: 10.48550/arXiv.2403.08167

MocFormer: A Two-Stage Pre-training-Driven Transformer for Drug-Target Interactions Prediction

Yi-Lun Zhang, Wen-Tao Wang, Jia-Hui Guan, Deepak Kumar Jain, Tian-Yang Wang, Swalpa Kumar Roy
Int J Comput. Intell Syst, 2024, 17 (1), 165.
DOI: 10.1007/s44196-024-00561-1

Protein-ligand binding representation learning from fine-grained interactions

Shikun Feng, Minghao Li, Yinjun Jia, Weiying Ma, Yanyan Lan
arXiv, 2023, 2311.16160.
DOI: 10.48550/arXiv.2311.16160

ProFSA: Self-supervised Pocket Pretraining via Protein Fragment- Surroundings Alignment

Bowen Gao, Yinjun Jia, Yuanle Mo, Yuyan Ni, Weiying Ma, Zhiming Ma, Yanyan Lan
arXiv, 2024, 2310.07229.
DOI: 10.48550/arXiv.2310.07229

An interpretable 3D multi-hierarchical representation-based deep neural network for environmental, health and safety properties prediction of organic solvents

Jun Zhang, Qin Wang, Yang Lei, Weifeng Shen
Green Chem., 2024, 26 (7), 4181–4191.
DOI: 10.1039/D3GC04801B

Stereochemically-aware bioactivity descriptors for uncharacterized chemical compounds

Arnau Comajuncosa-Creus, Aksel Lenes, Miguel S'anchez- Palomino, Dylan Dalton, Patrick Aloy
J. Cheminformatics, 2024, 16 (1), 70.
DOI: 10.1186/s13321-024-00867-4

DeepP450: Predicting Human P450 Activities of Small Molecules by Integrating Pretrained Protein Language Model and Molecular Representation

Jiamin Chang, Xiaoyu Fan, Boxue Tian
J. Chem. Inf. Model., 2024, 64 (8), 3149–3160.
DOI: 10.1021/acs.jcim.4c00115

Bridging Machine Learning and Thermodynamics for Accurate pK a Prediction

Weiliang Luo, Gengmo Zhou, Zhengdan Zhu, Yannan Yuan, Guolin Ke, Zhewei Wei, Zhifeng Gao, Hang Zheng
Jacs Au, 2024, 4 (9), 3451–3465.
DOI: 10.1021/jacsau.4c00271

A comprehensive transformer-based approach for high-accuracy gas adsorption predictions in metal-organic frameworks

Jingqi Wang, Jiapeng Liu, Hongshuai Wang, Musen Zhou, Guolin Ke, Linfeng Zhang, Jianzhong Wu, Zhifeng Gao, Diannan Lu
Nat. Commun., 2024, 15 (1), 1904.
DOI: 10.1038/s41467-024-46276-x

GeomCLIP: Contrastive Geometry-Text Pre-training for Molecules

Teng Xiao, Chao Cui, Huaisheng Zhu, Vasant G. Honavar
arXiv, 2024, 2411.10821.
DOI: 10.48550/arXiv.2411.10821

Automatic Screen-out of Ir(III) Complex Emitters by Combined Machine Learning and Computational Analysis

Zheng Cheng, Jiapeng Liu, Tong Jiang, Mohan Chen, Fuzhi Dai, Zhifeng Gao, Guolin Ke, Zifeng Zhao, Qi Ou
Adv. Opt. Mater., 2023, 11 (18).
DOI: 10.1002/adom.202301093

Node-Aligned Graph-to-Graph: Elevating Template-free Deep Learning Approaches in Single-Step Retrosynthesis

Lin Yao, Wentao Guo, Zhen Wang, Shang Xiang, Wentan Liu, Guolin Ke
Jacs Au, 2024, 4 (3), 992–1003.
DOI: 10.1021/jacsau.3c00737

Highly Accurate Quantum Chemical Property Prediction with Uni-Mol+

Shuqi Lu, Zhifeng Gao, Di He, Linfeng Zhang, Guolin Ke
arXiv, 2023, 2303.16982.
DOI: 10.48550/arXiv.2303.16982

Uni-QSAR: an Auto-ML Tool for Molecular Property Prediction

Zhifeng Gao, Xiaohong Ji, Guojiang Zhao, Hongshuai Wang, Hang Zheng, Guolin Ke, Linfeng Zhang
arXiv, 2023, 2304.12239.
DOI: 10.48550/arXiv.2304.12239

MMPolymer: A Multimodal Multitask Pretraining Framework for Polymer Property Prediction

Fanmeng Wang, Wentao Guo, Minjie Cheng, Shen Yuan, Hongteng Xu, Zhifeng Gao
arXiv, 2024, 2406.04727.
DOI: 10.48550/arXiv.2406.04727

A comprehensive transformer-based approach for high-accuracy gas adsorption predictions in metal-organic frameworks

Jingqi Wang, Jiapeng Liu, Hongshuai Wang, Musen Zhou, Guolin Ke, Linfeng Zhang, Jianzhong Wu, Zhifeng Gao, Diannan Lu
Nat. Commun., 2024, 15 (1), 1904.
DOI: 10.1038/s41467-024-46276-x

Bridging Machine Learning and Thermodynamics for Accurate pK a Prediction

Weiliang Luo, Gengmo Zhou, Zhengdan Zhu, Yannan Yuan, Guolin Ke, Zhewei Wei, Zhifeng Gao, Hang Zheng
Jacs Au, 2024, 4 (9), 3451–3465.
DOI: 10.1021/jacsau.4c00271

Accurate Conformation Sampling via Protein Structural Diffusion

Jiahao Fan, Ziyao Li, Eric Alcaide, Guolin Ke, Huaqing Huang, Weinan E
J. Chem. Inf. Model., 2024, 64 (22), 8414–8426.
DOI: 10.1021/acs.jcim.4c00928

Highly accurate carbohydrate-binding site prediction with DeepGlycanSite

Xinheng He, Lifen Zhao, Yinping Tian, Rui Li, Qinyu Chu, Zhiyong Gu, Mingyue Zheng, Yusong Wang, Shaoning Li, Hualiang Jiang, Yi Jiang, Liuqing Wen, Dingyan Wang, Xi Cheng
Nat. Commun., 2024, 15 (1), 5163.
DOI: 10.1038/s41467-024-49516-2

Stereochemically-aware bioactivity descriptors for uncharacterized chemical compounds

Arnau Comajuncosa-Creus, Aksel Lenes, Miguel S'anchez- Palomino, Dylan Dalton, Patrick Aloy
J. Cheminformatics, 2024, 16 (1), 70.
DOI: 10.1186/s13321-024-00867-4

Data-driven quantum chemical property prediction leveraging 3D conformations with Uni-Mol

Shuqi Lu, Zhifeng Gao, Di He, Linfeng Zhang, Guolin Ke
Nat. Commun., 2024, 15 (1), 7104.
DOI: 10.1038/s41467-024-51321-w

Exploring Chemical Reaction Space with Machine Learning Models: Representation and Feature Perspective

Yuheng Ding, Bo Qiang, Qixuan Chen, Yiqiao Liu, Liangren Zhang, Zhenming Liu
J. Chem. Inf. Model., 2024, 64 (8), 2955–2970.
DOI: 10.1021/acs.jcim.4c00004

Geometry-enhanced pretraining on interatomic potentials

Taoyong Cui, Chenyu Tang, Mao Su, Shufei Zhang, Yuqiang Li, Lei Bai, Yuhan Dong, Xingao Gong, Wanli Ouyang
Nat Mach Intell, 2024, 6 (4), 428–436.
DOI: 10.1038/s42256-024-00818-6

0%