DeepFlame 1.4 Released, Introducing Full-Speed Range Multiphase Reactive Flow Solver
DeepFlame is an open-source combustion fluid dynamics platform developed for the AI for Science era [1-3], aimed at overcoming the longstanding challenges of applying traditional Computational Fluid Dynamics (CFD) in the field of combustion. Since its release, DeepFlame has garnered significant interest and attention from both academia and industry, attracting a group of outstanding developers and users. This ongoing support has provided continuous momentum for DeepFlame's development and has been a crucial driving force in its application to real-world scenarios.
In recent years, research on aerosol or spray detonation propulsion using liquid fuels has been experiencing a resurgence, and supersonic combustion, such as detonation combustion in gas-liquid two-phase systems, has been gaining increasing attention. The DeepFlame team has captured these trending topics and, based on the OpenFOAM open-source library, coupled the Euler-Lagrange model into the high-speed flow solver dfHighSpeedFoam and the low-speed flow solver dfLowMachFoam. This enables the solvers to simulate two-phase reactive flows, thereby expanding the application scenarios of DeepFlame.