What Can DP Do too? | Using Machine Learning to Accelerate Molecular Dynamics to Uncover the Role of Water-Mediated Proton Hopping Mechanism at the SnO₂(110)/Water Interface
Recently, Dr. Mei Jia from Shangqiu Normal University, Dr. Yongbin Zhuang from École Polytechnique Fédérale de Lausanne (EPFL), and Prof. Jun Cheng from Xiamen University conducted an in-depth study on the proton transfer mechanism at the SnO₂(110)/H₂O interface by combining ab initio molecular dynamics (AIMD) with the Deep Potential (DP) method. The team used AIMD to obtain the electronic structure of the interface system and applied the Deep Potential Molecular Dynamics (DPMD) model to accelerate molecular dynamics simulations, enabling larger-scale and longer-timescale simulations. This combination of methods allowed the researchers to analyze the free energy distributions of different proton transfer pathways in detail and to reveal the influence of the solvation environment on the proton transfer process.
The related findings have been published in the high-impact journal Precision Chemistry, under the title “Water-Mediated Proton Hopping Mechanisms at the SnO₂(110)/H₂O Interface from Ab Initio Deep Potential Molecular Dynamics.” Dr. Mei Jia and Dr. Yongbin Zhuang are the co-first authors, and Prof. Jun Cheng is the corresponding author.