DeePTB | It supports strictly localized equivariant representation LCAO-quantum operators
In 2023, the AI for Science Institute, Beijing team introduced the v1 version of the DeePTB method, which was published on arXiv and joined the DeepModeling community. After nearly a year of rigorous peer review, it was officially published on August 8, 2024, in the international academic journal Nature Communications with the title "Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy" [1], DOI: 10.1038/s41467-024-51006-4.
The v1 version of DeePTB focuses on developing a deep learning-based method for constructing tight-binding (TB) model Hamiltonians. Based on the Slater-Koster TB parameterization, it builds first-principles equivalent electronic models using a minimal-basis set. By incorporating the localized chemical environment of atoms/bonds into the TB parameters, DeePTB achieves TB Hamiltonian predictions with near-DFT accuracy across a range of key material systems. By integrating with software like DeePMD-kit and TBPLaS, it enables the calculation and simulation of electronic structure properties and photoelectric responses in large-scale systems of up to millions of atoms in finite-temperature ensembles. This groundbreaking advancement has garnered widespread attention in the academic community and was ultimately published in Nature Communications. For more technical details on the DeePTB version, interested readers can refer to the DeePTB article in Nat Commun 15, 6772 (2024).