What Can Uni-Mol Do too? | Breaking the Limits of Few-shot Molecular Property Prediction
On August 19, 2024, Shuqi Lu and Zhifeng Gao from DP Technology, in collaboration with Professor Di He from Peking University, published a research article titled "Data-driven quantum chemical property prediction leveraging 3D conformations with Uni-Mol+" in Nature Communications. This study introduces Uni-Mol+, a deep learning algorithm that innovatively utilizes neural networks to iteratively optimize initial 3D molecular conformations, enabling precise prediction of quantum chemical properties. By progressively approximating Density Functional Theory (DFT) equilibrium conformations, Uni-Mol+ significantly enhances prediction accuracy, providing a powerful tool for high-throughput screening and new material design.